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Abstract
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Grouse (sage-grouse) that focuses specifically on habitat threats caused by invasive annual grasses and 
altered fire regimes. It uses information on factors that influence (1) sagebrush ecosystem resilience to distur-
bance and resistance to invasive annual grasses and (2) distribution, relative abundance, and persistence of 
sage-grouse populations to develop management strategies at both landscape and site scales. A sage-grouse 
habitat matrix links relative resilience and resistance of sagebrush ecosystems with sage-grouse habitat re-
quirements for landscape cover of sagebrush to help decision makers assess risks and determine appropriate 
management strategies at landscape scales. Focal areas for management are assessed by overlaying matrix 
components with sage-grouse Priority Areas for Conservation (PACs), breeding bird densities, and specific 
habitat threats. Decision tools are discussed for determining the suitability of focal areas for treatment and 
the most appropriate management treatments.
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Regimes on the Sagebrush Ecosystem and Greater  

Sage-Grouse: A Strategic Multi-Scale Approach

Jeanne C. Chambers, David A. Pyke, Jeremy D. Maestas, Mike Pellant,  
Chad S. Boyd, Steven B. Campbell, Shawn Espinosa, Douglas W. Havlina,  

Kenneth E. Mayer, and Amarina Wuenschel

Introduction_______________________________________________________
An unprecedented conservation effort is underway across 11 States in the western 

United States to reduce threats to Greater Sage-Grouse (Centrocercus urophasianus; 
hereafter, sage-grouse) and the sagebrush ecosystems on which they depend (fig. 1). Re-
cent efforts were accelerated by the March 2010 determination that sage-grouse warrant 
protection under the Federal Endangered Species Act, and by increased emphasis on broad 
collaboration among state and Federal partners to proactively identify and implement 
actions to reverse current trends (USFWS 2010, 2013). Conservation success hinges on 
being able to achieve “the long-term conservation of sage-grouse and healthy sagebrush 
shrub and native perennial grass and forb communities by maintaining viable, con-
nected, and well-distributed populations and habitats across their range, through threat 
amelioration, conservation of key habitats, and restoration activities” (USFWS 2013). 
While strides are being made to curtail a host of threats across the range, habitat loss 
and fragmentation due to wildfire and invasive plants remain persistent challenges to 

Figure 1.  Greater Sage-Grouse (Centrocercus urophasianus) (photo by Charlotte Ganskopp).
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achieving desired outcomes – particularly in the western portion of the range (Miller 
et al. 2011; USFWS 2010; 2013). Management responses to date have not been able 
to match the scale of this problem. Natural resource managers are seeking coordinated 
approaches that focus appropriate management actions in the right places to maximize 
conservation effectiveness (Wisdom and Chambers 2009; Murphy et al. 2013).

Improving our ability to manage for resilience to disturbance and resistance to inva-
sive species is fundamental to achieving long-term sage-grouse conservation objectives. 
Resilient ecosystems have the capacity to regain their fundamental structure, processes, 
and functioning when altered by stressors like drought and disturbances like inappropri-
ate livestock grazing and altered fire regimes (Holling 1973; Allen et al. 2005). Species 
resilience refers to the ability of a species to recover from stressors and disturbances 
(USFWS 2013), and is closely linked to ecosystem resilience. Resistant ecosystems 
have the capacity to retain their fundamental structure, processes, and functioning when 
exposed to stresses, disturbances, or invasive species (Folke et al. 2004). Resistance to 
invasion by nonnative plants is increasingly important in sagebrush ecosystems; it is a 
function of the abiotic and biotic attributes and ecological processes of an ecosystem that 
limit the population growth of an invading species (D’Antonio and Thomsen 2004). A 
detailed explanation of the factors that influence resilience and resistance in sagebrush 
ecosystems is found in Chambers et al. 2014.

In general, species are likely to be more resilient if large populations exist in large 
blocks of high quality habitat across the full breadth of environmental variability to which 
the species is adapted (Redford et al. 2011). Because sage-grouse are a broadly distrib-
uted and often wide-ranging species that may move long-distances between seasonal 
habitats (Connelly et al. 2011a,b), a strategic approach that integrates both landscape 
prioritization and site-scale decision tools is needed. This document develops such an 
approach for the conservation of sagebrush habitats across the range of sage-grouse 
with an emphasis on the western portion of the range. In recent years, information and 
tools have been developed that significantly increase our understanding of factors that 
influence the resilience of sagebrush ecosystems and the distribution of sage-grouse 
populations, and that allow us to strategically prioritize management activities where 
they are most likely to be effective and to benefit the species. Although the emphasis 
of this Report is on the western portion of the sage-grouse range, the approach has 
management applicability to other sagebrush ecosystems.

In this report, we briefly review causes and effects of invasive annual grasses and 
altered fire regimes, and then discuss factors that determine resilience to disturbances 
like wildfire and resistance to invasive annual grasses in sagebrush ecosystems. We 
illustrate how an understanding of resilience and resistance, sagebrush habitat require-
ments for sage-grouse, and consequences that invasive annual grasses and wildfire 
have on sage-grouse populations can be used to develop management strategies at both 
landscape and site scales. A sage-grouse habitat matrix is provided that links relative 
resilience and resistance with habitat requirements for landscape cover of sagebrush to 
both identify priority areas for management and determine effective management strate-
gies at landscape scales. An approach for assessing focal areas for sage-grouse habitat 
management is described that overlays Priority Areas for Conservation (PACs) and 
breeding bird densities with resilience and resistance and habitat suitability to spatially 
link sage-grouse populations with habitat conditions and risks. The use of this approach 
is illustrated for the western portion of the range and for a diverse area in the northeast 
corner of Nevada. It concludes with a discussion of the tools available for determining 
the suitability of focal areas for treatment and the most appropriate management treat-
ments. Throughout the document, the emphasis is on using this approach to guide and 
assist fire operations, fuels management, post-fire rehabilitation, and habitat restoration 
activities to maintain or enhance sage-grouse habitat.
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Threats of Invasive Annual Grasses and Altered Fire Regimes to Sagebrush 
Ecosystems and Sage-Grouse________________________________________

Effects on Sagebrush Ecosystems

Sage-grouse habitat loss and fragmentation due to wildfire and invasive plants are 
widely recognized as two of the most significant challenges to conservation of the spe-
cies, particularly in the western portion of the range (Miller et al. 2011; USFWS 2010, 
2013). During pre-settlement times, sagebrush-dominated ecosystems had highly variable 
fire return intervals that ranged from decades to centuries (Frost 1998; Brown and Smith 
2000; Miller et al. 2011). At coarse regional scales, fire return intervals in sagebrush 
ecological types were determined largely by climate and its effects on fuel abundance 
and continuity. Consequently, fire frequency was higher in sagebrush types with greater 
productivity at higher elevations and following periods of increased precipitation than 
in lower elevation and less productive ecosystems (West 1983b; Mensing et al. 2006). 
At local scales within sagebrush types, fire return intervals likely were determined by 
topographic and soil effects on productivity and fuels and exhibited high spatial and 
temporal variability (Miller and Heyerdahl 2008).

Euro-American arrival in sagebrush ecosystems began in the mid-1800s and initiated 
a series of changes in vegetation composition and structure that altered fire regimes and 
resulted in major changes in sagebrush habitats. The first major change in fire regimes 
occurred when inappropriate grazing by livestock led to a decrease in native perennial 
grasses and forbs and effectively reduced the abundance of fine fuels (Knapp 1996; 
Miller and Eddleman 2001; Miller et al. 2011). Decreased competition from perennial 
herbaceous species, in combination with ongoing climate change and favorable condi-
tions for woody species establishment at the turn of the twentieth century, resulted in 
increased abundance of shrubs (primarily Artemisia species) and trees, including juniper 
(Juniperus occidentalis, J. osteosperma) and piñon pine (Pinus monophylla), at mid to 
high elevations (Miller and Eddleman 2001; Miller et al. 2011). The initial effect of these 
changes in fuel structure was a reduction in fire frequency and size. The second major 
change in fire regimes occurred when non-native annual grasses (e.g., Bromus tectorum, 
Taeniatherum caput-medusa) were introduced from Eurasia in the late 1800s and spread 
rapidly into low to mid-elevation ecosystems with depleted understories (Knapp 1996). 
The invasive annual grasses increased the amount and continuity of fine fuels in many 
lower elevation sagebrush habitats and initiated annual grass/fire cycles characterized 
by shortened fire return intervals and larger, more contiguous fires (fig. 2; D’Antonio 
and Vitousek 1992; Brooks et al. 2004). Since settlement of the region, cheatgrass came 
to dominate as much as 4 million hectares (9.9 million acres) in the states of Nevada 
and Utah alone (fig. 3; Bradley and Mustard 2005). The final change in fire regimes 
occurred as a result of expansion of juniper and piñon pine trees into sagebrush types at 
mid to high elevations and a reduction of the grass, forb, and shrub species associated 
with these types. Ongoing infilling of trees is increasing woody fuels, but reducing fine 
fuels and resulting in less frequent fires (fig. 4; Miller et al. 2013). Extreme burning 
conditions (high winds, high temperatures, and low relative humidity) in high density 
(Phase III) stands are resulting in large and severe fires that result in significant losses 
of above- and below-ground organic matter (sensu Keeley 2009) and have detrimental 
ecosystem effects (Miller et al. 2013). Based on tree-ring analyses at several Great Basin 
sites, it is estimated that the extent of piñon and/or juniper woodland increased two to 
six fold since settlement, and most of that area will exhibit canopy closure within the 
next 50 years (Miller et al. 2008).
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Figure 2.  A wildfire that burned through a Wyoming big sagebrush ecosystem with an invasive annual 
grass understory in southern Idaho (top) (photo by Douglas J. Shinneman), and a close-up of a fire in 
a Wyoming big sagebrush ecosystem (bottom) (photo by Scott Schaff).
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Figure 3.  A wildfire that started in invasive annual grass adjacent to a railroad track and burned upslope into 
a mountain big sagebrush and Jeffrey pine ecosystem in northeast Nevada (top). A big sagebrush ecosystem 
that has been converted to invasive annual grass in north central Nevada (bottom) (photos by Nolan E. Preece). 
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Figure 4.  Expansion of Utah juniper trees into a mountain big sagebrush ecosystem in east central 
Utah (top) that is resulting in progressive infilling of the trees and exclusion of native understory spe-
cies (bottom) (photos by Bruce A. Roundy). 



7USDA Forest Service Gen. Tech. Rep. RMRS-GTR-326. 2014

Effects on Sage-Grouse Habitat Selection and Population Dynamics

Understanding the effects of landscape changes on sage-grouse habitat selection and 
population dynamics can help managers apply more strategic and targeted conserva-
tion actions to reduce risks. Two key land cover shifts resulting from invasive annual 
grasses and altered fire regimes are affecting the ability to achieve the range-wide goal 
of stable-to-increasing population trends − large-scale reduction of sagebrush cover and 
conversion of sagebrush ecosystems to annual grasslands.

Sage-grouse are true sagebrush obligates that require large and intact sagebrush 
landscapes. Consequently, wildfires occurring at the extremes of the natural range of 
variability that remove sagebrush, even temporarily, over large areas and over short time 
periods often have negative consequences for sage-grouse. Several range-wide studies 
have identified the proportion of sagebrush-dominated land cover as a key indicator 
of sage-grouse population persistence and, importantly, have revealed critical levels of 
sagebrush landscape cover required by sage-grouse (see Appendix 2 for a description 
of landscape cover and how it is derived). Knick et al. (2013) found that 90% of active 
leks in the western portion of the range had more than 40% landscape cover of sagebrush 
within a 5-km (3.1-mi) radius of leks. Another range-wide analysis documented a high 
risk of extirpation with <27% sagebrush landscape cover and high probability of persis-
tence with >50% sagebrush landscape cover within 18-km (11.2-mi) of leks (Wisdom 
et al. 2011). Similarly, Aldridge et al. (2008) found long-term sage-grouse persistence 
required a minimum of 25%, and preferably at least 65%, sagebrush landscape cover at 
the 30-km (18.6-mi) scale. Considered collectively, cumulative disturbances that reduce 
the cover of sagebrush to less than a quarter of the landscape have a high likelihood of 
resulting in local population extirpation, while the probability of maintaining persistent 
populations goes up considerably as the proportion of sagebrush cover exceeds two-thirds 
or more of the landscape. Reduction of sagebrush cover is most critical in low to mid 
elevations where natural recovery of sagebrush can be very limited within timeframes 
important to sage-grouse population dynamics (Davies et al. 2011).

Nonnative annual grasses and forbs have invaded vast portions of the sage-grouse 
range, reducing both habitat quantity and quality (Beck and Mitchell 2000; Rowland 
et al. 2006; Miller et al. 2011; Balch et al. 2013). Due to repeated fires, some low- to 
mid-elevation native sagebrush communities are shifting to novel annual grassland states 
resulting in habitat loss that may be irreversible with current technologies (Davies et 
al. 2011; Miller et al. 2011; Chambers et al. 2014). At the broadest scales, the presence 
of non-native annual grasslands on the landscape may be influencing both sage-grouse 
distribution and abundance. In their analysis of active leks, Knick et al. (2013) found 
that most leks had very little annual grassland cover (2.2%) within a 5-km (3.1-mi) 
radius of the leks; leks that were no longer used had almost five times as much annual 
grassland cover as active leks. Johnson et al. (2011) found that lek use became progres-
sively less as the cover of invasive annual species increased at both the 5-km (3.1-mi) 
and 18-km (11.2-mi) scales. Also, few leks had >8% invasive annual vegetation cover 
within both buffer distances.

Patterns of nest site selection also suggest local impacts of invasive annual grasses on 
birds. In western Nevada, Lockyer (2012) found that sage-grouse selected large expanses 
of sagebrush-dominated areas and, within those areas, sage-grouse selected microsites 
with higher shrub canopy cover and lower cheatgrass cover. Average cheatgrass cover 
at selected locations was 7.1% compared to 13.3% at available locations. Sage-grouse 
hens essentially avoided nesting in areas with higher cheatgrass cover. Kirol et al. (2012) 
also found nest-site selection was negatively correlated with the presence of cheatgrass 
in south-central Wyoming.
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Sage-grouse population demographic studies in northern Nevada show that recruit-
ment and annual survival also are affected by presence of annual grasslands at larger 
scales. Blomberg et al. (2012) analyzed land cover within a 5-km (3.1-mi) radius of 
leks and found that leks impacted by annual grasslands experienced lower recruitment 
than non-impacted leks, even following years of high precipitation. Leks that were not 
affected by invasive annual grasslands exhibited recruitment rates nearly twice as high 
as the population average and nearly six times greater than affected leks during years 
of high precipitation.

Piñon and juniper expansion at mid to upper elevations into sagebrush ecosystems 
also has altered fire regimes and reduced sage-grouse habitat availability and suitability 
over large areas with population-level consequences (Miller et al. 2011; Baruch-Mordo 
et al. 2013; Knick et al. 2013). Conifer expansion results in non-linear declines in 
sagebrush cover and reductions in perennial native grasses and forbs as conifer canopy 
cover increases (Miller et al. 2000) and this has direct effects on the amount of avail-
able habitat for sagebrush-obligate species. Sites in the late stage of piñon and juniper 
expansion and infilling (Phase III from Miller et al. 2005) have reduced fire frequency 
(due to decreased fine fuels), but are prone to higher severity fires (due to increased 
woody fuels) which significantly reduces the likelihood of sagebrush habitat recovery 
(fig. 5) (Bates et al. 2013). Even before direct habitat loss occurs, sage-grouse avoid or 
are negatively associated with conifer cover during all life stages (i.e., nesting, brood-
rearing, and wintering; Doherty et al. 2008, 2010a; Atamian et al. 2010; Casazza et al. 
2011). Also, sage-grouse incur population-level impacts at a very low level of conifer 
encroachment. The ability to maintain active leks is severely compromised when conifer 
canopy exceeds 4% in the immediate vicinity of the lek (Baruch-Mordo et al. 2013), 
and most active leks average less than 1% conifer cover at landscape scales (Knick 
et al. 2013).

Figure 5.  A post-burn, Phase III, singleleaf piñon and Utah juniper dominated sagebrush 
ecosystem in which soils are highly erosive and few understory plants remain (photo by 
Jeanne C. Chambers). 
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Resilience to Disturbance and Resistance to Invasive Annual Grasses in 
Sagebrush Ecosystems_____________________________________________

Our ability to address the changes occurring in sagebrush habitats can be greatly en-
hanced by understanding the effects of environmental conditions on resilience to stress 
and disturbance, and resistance to invasion (Wisdom and Chambers 2009; Brooks and 
Chambers 2011; Chambers et al. 2014). In cold desert ecosystems, resilience of native 
ecosystems to stress and disturbance changes along climatic and topographic gradients. 
In these ecosystems, Wyoming big sagebrush (Artemisia tridentata spp. wyomingensis), 
mountain big sagebrush (A. t. spp. vaseyana), and mountain brush types (e.g., mountain 
big sagebrush, snowberry [Symphorocarpus spp.], bitterbrush [Purshia tridentata]) occur 
at progressively higher elevations and are associated with decreasing temperatures and 
increasing amounts of precipitation, productivity, and fuels (fig. 6; West and Young 2000). 
Piñon pine and juniper woodlands are typically associated with mountain big sagebrush 
types, but can occur with relatively cool and moist Wyoming big sagebrush types and 
warm and moist mountain brush types (Miller et al. 2013). Resilience to disturbance, 
including wildfire, has been shown to increase along these elevation gradients (fig. 7A) 
(Condon et al. 2011; Davies et al. 2012; Chambers et al. 2014; Chambers et al. in press). 
Higher precipitation and cooler temperatures, coupled with greater soil development 
and plant productivity at mid to high elevations, can result in greater resources and more 
favorable environmental conditions for plant growth and reproduction (Alexander et al. 
1993; Dahlgren et al. 1997). In contrast, minimal precipitation and high temperatures 
at low elevations result in lower resource availability for plant growth (West 1983a,b; 

Figure 6.  The dominant sagebrush ecological types that occur along environmental gradients in the western United States. 
As elevation increases, soil temperature and moisture regimes transition from warm and dry to cold and moist and vegetation 
productivity and fuels become higher. 
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Figure 7. (A) Resilience to disturbance 
and (B) resistance to cheatgrass over 
a typical temperature/precipitation 
gradient in the cold desert. Dominant 
ecological sites occur along a continuum 
that includes Wyoming big sagebrush 
on warm and dry sites, to mountain 
big sagebrush on cool and moist sites, 
to mountain big sagebrush and root-
sprouting shrubs on cold and moist 
sites. Resilience increases along the 
temperature/precipitation gradient and 
is influenced by site characteristics like 
aspect. Resistance also increases along 
the temperature/precipitation gradient 
and is affected by disturbances and 
management treatments that alter veg-
etation structure and composition and 
increase resource availability (modified 
from Chambers et al. 2014; Chambers 
et al. in press).

Smith and Nowak 1990). These relationships also are observed at local plant commu-
nity scales where aspect, slope, and topographic position affect solar radiation, erosion 
processes, effective precipitation, soil development and vegetation composition and 
structure (Condon et al. 2011; Johnson and Miller 2006).

Resistance to invasive annual grasses depends on environmental factors and ecosystem 
attributes and is a function of (1) the invasive species’ physiological and life history 
requirements for establishment, growth, and reproduction, and (2) interactions with the 
native perennial plant community including interspecific competition and response to 
herbivory and pathogens. In cold desert ecosystems, resistance is strongly influenced 
by soil temperature and moisture regimes (Chambers et al. 2007; Meyer et al. 2001). 
Germination, growth, and/or reproduction of cheatgrass is physiologically limited at low 
elevations by frequent, low precipitation years, constrained at high elevations by low 
soil temperatures, and optimal at mid elevations under relatively moderate temperature 
and water availability (fig. 7B; Meyer et al. 2001; Chambers et al. 2007). Slope, aspect, 
and soil characteristics modify soil temperature and moisture and influence resistance 
to cheatgrass at landscape to plant community scales (Chambers et al. 2007; Condon et 
al. 2011; Reisner et al. 2013). Genetic variation in cheatgrass results in phenotypic traits 
that increase survival and persistence in populations from a range of environments, and 
is likely contributing to the recent range expansion of this highly inbreeding species 
into marginal habitats (Ramakrishnan et al. 2006; Merrill et al. 2012).

The occurrence and persistence of invasive annual grasses in sagebrush habitats is 
strongly influenced by interactions with the native perennial plant community (fig. 7B). 
Cheatgrass, a facultative winter annual that can germinate from early fall through early 
spring, exhibits root elongation at low soil temperatures, and has higher nutrient up-
take and growth rates than most native species (Mack and Pyke 1983; Arredondo et al. 
1998; James et al. 2011). Seedlings of native, perennial plant species are generally poor 
competitors with cheatgrass, but adults of native, perennial grasses and forbs, especially 
those with similar growth forms and phenology, can be highly effective competitors with 
the invasive annual (Booth et al. 2003; Chambers et al. 2007; Blank and Morgan 2012). 
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Also, biological soil crusts, which are an important component of plant communities 
in warmer and drier sagebrush ecosystems, can reduce germination or establishment of 
cheatgrass (Eckert et al. 1986; Kaltenecker et al. 1999). Disturbances or management 
treatments that reduce abundance of native perennial plants and biological soil crusts 
and increase the distances between perennial plants often are associated with higher 
resource availability and increased competitive ability of cheatgrass (Chambers et al. 
2007; Reisner et al. 2013; Roundy et al. in press).

The type, characteristics, and natural range of variability of stress and disturbance 
strongly influence both resilience and resistance (Jackson 2006). Disturbances like 
overgrazing of perennial plants by livestock, wild horses, and burros and more fre-
quent or more severe fires are typically outside of the natural range of conditions and 
can reduce the resilience of sagebrush ecosystems. Reduced resilience is triggered by 
changes in environmental factors like temperature regimes, abiotic attributes like water 
and nutrient availability, and biotic attributes such as vegetation structure, composition, 
and productivity (Chambers et al. 2014) and cover of biological soil crusts (Reisner et 
al. 2013). Resistance to an invasive species can change when changes in abiotic and 
biotic attributes result in increased resource availability or altered habitat suitability 
that influences an invasive species’ ability to establish and persist and/or compete with 
native species. Progressive losses of resilience and resistance can result in the crossing 
of abiotic and/or biotic thresholds and an inability of the system to recover to the refer-
ence state (Beisner et al. 2003; Seastedt et al. 2008).

Interactions among disturbances and stressors may have cumulative effects (Chambers 
et al. 2014). Climate change already may be shifting fire regimes outside of the natural 
range of occurrence (i.e., longer wildfire seasons with more frequent and longer duration 
wildfires) (Westerling et al. 2006). Sagebrush ecosystems generally have low productiv-
ity, and the largest number of acres burned often occurs a year or two after warm, wet 
conditions in winter and spring that result in higher fine fuel loads (Littell et al. 2009). 
Thus, annual grass fire cycles may be promoted by warm, wet winters and a subsequent 
increase in establishment and growth of invasive winter annuals. These cycles may be 
exacerbated by rising atmospheric CO2 concentrations, N deposition, and increases in 
human activities that result in soil surface disturbance and invasion corridors (Chambers 
et al. 2014). Modern deviations from historic conditions will likely continue to alter 
disturbance regimes and sagebrush ecosystem response to disturbances; thus, manage-
ment strategies that rely on returning to historical or “pre-settlement” conditions may be 
insufficient, or even misguided, given novel ecosystem dynamics (Davies et al. 2009).

Integrating Resilience and Resistance Concepts With Sage-Grouse Habitat 
Requirements to Manage Wildfire and Invasive Annual Grass Threats at 
Landscape Scales__________________________________________________

The changes in sagebrush ecosystem dynamics due to invasive annual species and 
longer, hotter, and drier fire seasons due to a warming climate make it unlikely that 
these threats can be ameliorated completely (Abatzoglou and Kolden 2011; USFWS 
2013). Consequently, a strategic approach is necessary to conserve sagebrush habitat 
and sage-grouse (Wisdom et al. 2005; Meinke et al. 2009; Wisdom and Chambers 2009; 
Pyke 2011). This strategic approach requires the ability to (1) identify those locations 
that provide current or potential habitat for sage-grouse and (2) prioritize management 
actions based on the capacity of the ecosystem to respond in the desired manner and 
to effectively allocate resources to achieve desired objectives. Current understanding 
of the relationship of landscape cover of sagebrush to sage-grouse habitat provides the 
capacity to identify those locations on the landscape that have a high probability of 
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sage-grouse persistence (Aldridge et al. 2008; Wisdom et al. 2011; Knick et al. 2013). 
Similarly, knowledge of the relationships of environmental characteristics, specifically 
soil temperature and moisture regimes, to ecological types and their inherent resilience 
and resistance gives us the capacity to prioritize management actions based on probable 
effectiveness of those actions (Wisdom and Chambers 2009; Brooks and Chambers 
2011; Miller et al. 2013; Chambers et al. 2014; Chambers et al. in press,).

In this section, we discuss the use of landscape cover of sagebrush as an indicator of 
sage-grouse habitat, and the use of soil temperature and moisture regimes as an indicator 
of resilience to disturbance, resistance to invasive annual grasses and, ultimately, the 
capacity to achieve desired objectives. We then show how these two concepts can be 
coupled in a sage-grouse habitat matrix and used to determine potential management 
strategies at the landscape scales on which sage-grouse depends.

Landscape Cover of Sagebrush as an Indicator of Sage-Grouse Habitat

Landscape cover of sagebrush is closely related to the probability of maintaining 
active sage-grouse leks, and is used as one of the primary indicators of sage-grouse 
habitat potential at landscape scales (Aldridge et al. 2008; Wisdom et al. 2011; Knick 
et al. 2013). Landscape cover of sagebrush less than about 25% has a low probability of 
sustaining active sage-grouse leks (Aldridge et al. 2008; Wisdom et al. 2011; Knick et 
al. 2013). Above 25% landscape cover of sagebrush, the probability of maintaining ac-
tive sage-grouse leks increases with increasing sagebrush landscape cover. At landscape 
cover of sagebrush ranging from 50 to 85%, the probability of sustaining sage-grouse 
leks becomes relatively constant (Aldridge et al. 2008; Wisdom et al. 2011; Knick et al. 
2013). For purposes of prioritizing landscapes for sage-grouse habitat management, we 
use 25% as the level below which there is a low probability of maintaining sage-grouse 
leks and 65% as the level above which there is little additional increase in the probability 
of sustaining active leks with further increases of landscape cover of sagebrush (fig. 8; 
Knick et al. 2013). Between about 25% and 65% landscape sagebrush cover, increases 
in landscape cover of sagebrush have a constant positive relationship with sage-grouse 
lek probability (fig. 8; Knick et al. 2013). Restoration and management activities that 
result in an increase in the amount of sagebrush dominated landscape within areas of 
pre-existing landscape cover between 25% and 65% likely will result in a higher prob-
ability of sage-grouse persistence, while declines in landscape cover of sagebrush likely 
will result in reductions in sage-grouse (Knick et al. 2013). It is important to note that 

Figure 8. The proportion of sage-grouse leks 
and habitat similarity index (HSI) as related to 
the percent landscape cover of sagebrush. The 
HSI indicates the relationship of environmental 
variables at map locations across the western 
portion of the range to minimum requirements 
for sage-grouse defined by land cover, an-
thropogenic variables, soil, topography, and 
climate. HSI is the solid black line ± 1 SD 
(stippled lines). Proportion of leks are the grey 
bars. Dashed line indicates HSI values above 
which characterizes 90% of active leks (0.22). 
The categories at the top of the figure and the 
interpretation of lek persistence were added 
based on Aldridge et al. 2008; Wisdom et al. 
2011; and Knick et al. 2013 (figure modified 
from Knick et al. 2013).
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these data and interpretations relate only to persistence (i.e., whether or not a lek remains 
active) and it is likely that higher proportions of sagebrush cover or improved condition 
of sagebrush ecosystems may be required for population growth.

For the purposes of delineating sagebrush habitat relative to sage-grouse requirements 
for landscape cover of sagebrush, we calculated the percentage landscape sagebrush 
cover within each of the selected categories (1-25%, 26-65%, >65%) for the range of 
sage-grouse (fig. 9, 10). An explanation of how landscape cover of sagebrush is derived 
is in Appendix 2. Large areas of landscape sagebrush cover >65% are found primarily in 
Management Zones (MZ) II (Wyoming Basin), IV (Snake River Plains), and V (Northern 
Great Basin). In contrast, relatively small areas of landscape sagebrush cover >65% are 
located in MZ I (Great Plains), III (Southern Great Basin), VI (Columbia Basin), and 
VII (Colorado Plateau). Sagebrush is naturally less common in the Great Plains region 
compared to other parts of the range and previous work suggested that sage-grouse 
populations in MZ I may be more vulnerable to extirpation with further reductions in 
sagebrush cover (Wisdom et al. 2011). In the western portion of the range, where the 
threat of invasive annual grasses and wildfire is greatest, the area of sagebrush cover 
>65% differs among MZs. MZ III is a relatively arid and topographically diverse area in 
which the greatest extent of sagebrush cover >65% is in higher elevation, mountainous 
areas. MZs IV and V have relatively large extents of sagebrush cover >65% in relatively 
cooler and wetter areas, and MZs IV and VI have lower extents of sagebrush cover >65% 
in warmer and dryer areas and in areas with significant agricultural development. These 
differences in landscape cover of sagebrush indicate that different sets of management 
strategies may apply to the various MZs.

Soil Temperature and Moisture Regimes as Indicators of Ecosystem Resilience and 
Resistance

Potential resilience and resistance to invasive annual grasses reflect the biophysical 
conditions that an area is capable of supporting. In general, the highest potential resil-
ience and resistance occur with cool to cold (frigid to cryic) soil temperature regimes 
and relatively moist (xeric to ustic) soil moisture regimes, while the lowest potential 
resilience and resistance occur with warm (mesic) soil temperatures and relatively dry 
(aridic) soil moisture regimes (Chambers et al. 2014, Chambers et al. in press). Defini-
tions of soil temperature and moisture regimes are in Appendix 3. Productivity is elevated 
by high soil moisture and thus resilience is increased (Chambers et al. 2014); annual 
grass growth and reproduction is limited by cold soil temperatures and thus resistance 
is increased (Chambers et al. 2007). The timing of precipitation also is important be-
cause cheatgrass and many other invasive annual grasses are particularly well-adapted 
to Mediterranean type climates with cool and wet winters and warm and dry summers 
(Bradford and Lauenroth 2006; Bradley 2009). In contrast, areas that receive regular 
summer precipitation (ustic soil moisture regimes) often are dominated by warm and/
or cool season grasses (Sala et al. 1997) that likely create a more competitive environ-
ment and result in greater resistance to annual grass invasion and spread (Bradford and 
Lauenroth 2006; Bradley 2009).

Much of the remaining sage-grouse habitat in MZs I (Great Plains), II (Wyoming 
Basin), VII (Colorado Plateau), and cool-to-cold or moist sites scattered across the 
range, are characterized by moderate to high resilience and resistance as indicated by 
soil temperature and moisture regimes (fig. 11). Sagebrush habitats across MZ I are 
unique from a range-wide perspective because soils are predominantly cool and ustic, 
or bordering on ustic as a result of summer precipitation; this soil moisture regime 
appears to result in higher resilience and resistance (Bradford and Lauenroth 2006). 
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Figure 9. Landscape cover of sagebrush from 1-m National Agricultural Imagery (right) and the corresponding sagebrush 
landscape cover for the 1-25%, 26-65%, and >65% categories (left). See Appendix 2 for an explanation of how the cat-
egories are determined.
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Figure 10. The landscape cover of sagebrush within each of three selected categories (1-25%, 26-65%, >65%) for the range 
of sage-grouse (Management Zones I – VII; Stiver et al. 2006). The proportion of sagebrush (USGS 2013) within each of the 
categories in a 5-km (3.1-mi) radius surrounding each pixel was calculated relative to other land cover types for locations with 
sagebrush cover.
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Figure 11.  The soil temperature and moisture regimes for the range of sage-grouse (Management Zones I – VII; Stiver 
et al. 2006). Soil temperature and moisture classes were derived from the Natural Resources Conservation Service 
(NRCS) Soil Survey Geographic Database (SSURGO) (Soil Survey Staff 2014a). Gaps in that dataset were filled in 
with the NRCS State Soil Geographic Database (STATSGO) (Soil Survey Staff 2014b).
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However, significant portions of MZs III (Southern Great Basin), much of IV (Snake 
River Plains), V (Northern Great Basin), and VI (Columbia Basin) are characterized 
largely by either warm and dry, or warm to cool and moist ecological types with moder-
ate to low resilience and resistance (fig. 11; table 1). Areas within these MZs that have 
warm and dry soils are typically characterized by Wyoming big sagebrush ecosystems 
with low to moderately low resilience and resistance and are currently of greatest con-
cern for sage-grouse conservation (fig. 12A). Areas with warm to cool soil temperature 
regimes and moist precipitation regimes are typically characterized by either Wyoming 
or mountain big sagebrush, have moderate to moderately low resilience and resistance, 

Table 1.  Predominant sagebrush ecological types in Sage-Grouse Management Zones III, IV, V, and VI based on soil tempera-
ture and soil moisture regimes, typical characteristics, and resilience to disturbance and resistance to invasive annual 
grasses (modified from Miller et al. 2014 a,b). Relative abundance of sagebrush species and composition of understory 
vegetation vary depending on Major Land Resource Area and ecological site type. 

Ecological type  Characteristics Resilience and resistance
Cold and Moist
(Cryic/Xeric)

Ppt: 14 inches +
Typical shrubs:  Mountain big sagebrush, 
snowfield sagebrush, snowberry, ser-
viceberry, silver sagebrush,  and/or low 
sagebrushes

Resilience – Moderately high. Precipitation and produc-
tivity are generally high.  Short growing seasons can de-
crease resilience on coldest sites.
Resistance– High. Low climate suitability to invasive an-
nual grasses

Cool and Moist
(Frigid/Xeric) 

Ppt: 12-22 inches
Typical shrubs:  Mountain big sagebrush,  
antelope bitterbrush, snowberry, and/or 
low sagebrushes 

Piñon pine and juniper potential
in some areas

Resilience – Moderately high. Precipitation and productiv-
ity are generally high. Decreases in site productivity, her-
baceous perennial species, and ecological conditions can 
decrease resilience.
Resistance – Moderate. Climate suitability to invasive an-
nual grasses is moderate, but increases as soil tempera-
tures increase. 

Warm and Moist
(Mesic/Xeric)

Ppt: 12-16 inches
Typical shrubs: Wyoming big sagebrush, 
mountain big sagebrush, Bonneville big 
sagebrush, and/or low sagebrushes

Piñon pine and juniper potential in some 
areas

Resilience – Moderate. Precipitation and productivity are 
moderately high. Decreases in site productivity, herba-
ceous perennial species, and ecological conditions can 
decrease resilience.
Resistance – Moderately low. Climate suitability to inva-
sive annual grasses is moderately low, but increases as 
soil temperatures increase.

Cool and Dry
(Frigid/Aridic)

Ppt: 6-12 inches
Typical shrubs: Wyoming big sagebrush, 
black sagebrush, and/or low sagebrushes

Resilience – Low. Effective precipitation limits site produc-
tivity. Decreases in site productivity, herbaceous perennial 
species, and ecological conditions further decrease resil-
ience.
Resistance – Moderate. Climate suitability to invasive an-
nual grasses is moderate, but increases as soil tempera-
tures increase. 
 

Warm and Dry 
(Mesic/Aridic, 
bordering on Xeric)

Ppt: 8-12 inches
Typical shrubs: Wyoming big sagebrush, 
black sagebrush and/or low sagebrushes

Resilience – Low. Effective precipitation limits site produc-
tivity. Decreases in site productivity, herbaceous perennial 
species, and ecological conditions further decrease resil-
ience. Cool season grasses susceptibility to grazing and 
fire, along with hot dry summer fire conditions, promote 
cheatgrass establishment and persistence.
Resistance – Low. High climate suitability to cheatgrass 
and other invasive annual grasses. Resistance generally 
decreases as soil temperature increases, but establish-
ment and growth are highly dependent on precipitation.
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and have the potential for piñon and juniper expansion (Miller et al. 2014a; Chambers 
et al. in press). Many of these areas also are of conservation concern because piñon and 
juniper expansion and tree infilling can result in progressive loss of understory species 
and altered fire regimes (Miller et al. 2013). In contrast, areas with cool to cold soil 
temperature regimes and moist precipitation regimes have moderately high resilience 
and high resistance and are likely to recover in a reasonable amount of time following 
wildfires and other disturbances (Miller et al. 2013) (fig. 12B)

Figure 12. A Wyoming big sagebrush ecosystem with warm and dry soils in southeast 
Oregon (top) (photo by Richard F. Miller), compared to a mountain big sagebrush 
ecosystem with cool and moist soils in central Nevada (bottom) (photo by Jeanne C. 
Chambers).
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Management Strategies Based on Landscape Cover of Sagebrush and Ecosystem 
Resilience and Resistance: The Sage-Grouse Habitat Matrix

Knowledge of the potential resilience and resistance of sagebrush ecosystems can be 
used in conjunction with sage-grouse habitat requirements to determine priority areas for 
management and identify effective management strategies at landscape scales (Wisdom 
and Chambers 2009). The sage-grouse habitat matrix (table 2) illustrates the relative 
resilience to disturbance and resistance to invasive annual grasses of sagebrush eco-
systems in relation to the proportion of sagebrush cover on the landscape. As resilience 
and resistance go from high to low, as indicated by the rows in the matrix, decreases 
in sagebrush regeneration and abundance of perennial grasses and forbs progressively 
limit the capacity of a sagebrush ecosystem to recover after fire or other disturbances. 
The risk of annual invasives increases and the ability to successfully restore burned or 
otherwise disturbed areas decreases. As sagebrush cover goes from low to high within 
these same ecosystems, as indicated by the columns in the matrix, the capacity to provide 
adequate habitat cover for sage-grouse increases. Areas with less than 25% landscape 
cover of sagebrush are unlikely to provide adequate habitat for sage-grouse; areas with 
26-65% landscape cover of sagebrush can provide habitat for sage-grouse but are at 
risk if sagebrush loss occurs without recovery; and areas with >65% landscape cover of 
sagebrush provide the necessary habitat conditions for sage-grouse to persist. Potential 
landscape scale management strategies can be determined by considering (1) resilience 
to disturbance, (2) resistance to invasive annuals, and (3) sage-grouse land cover require-
ments. Overarching management strategies to maintain or increase sage-grouse habitat at 
landscape scales based on these considerations are conservation, prevention, restoration, 
and monitoring and adaptive management (table 3; see Chambers et al. 2014). These 
strategies have been adapted for each of the primary agency programs including fire 
operations, fuels management, post-fire rehabilitation, and habitat restoration (table 4). 
Because sagebrush ecosystems occur over continuums of environmental conditions, 
such as soil temperature and moisture, and have differing land use histories and species 
composition, careful assessment of the area of concern always will be necessary to de-
termine the relevance of a particular strategy (Pyke 2011; Chambers et al. 2014; Miller 
et al. 2014 a, b). The necessary information for conducting this type of assessment is 
found in the “Putting It All Together” section of this report.

Although the sage-grouse habitat matrix (table 2) can be viewed as partitioning 
land units into spatially discrete categories (i.e., landscapes or portions thereof can be 
categorized as belonging to one of nine categories), it is not meant to serve as a strict 
guide to spatial allocation of resources or to prescribe specific management strategies. 
Instead, the matrix should serve as a decision support tool for helping managers imple-
ment strategies that consider both the resilience and resistance of the landscape and 
landscape sagebrush cover requirements of sage-grouse. For example, low elevation 
Wyoming big sagebrush plant communities with relatively low resilience and resistance 
may provide important winter habitat resources for a given sage-grouse population. In 
a predominantly Wyoming big sagebrush area comprised of relatively low sagebrush 
landscape cover, a high level of management input may be needed to realize conservation 
benefits for sage-grouse. This doesn’t mean that management activities should not be 
undertaken if critical or limiting sage-grouse habitat resources are present, but indicates 
that inputs will be intensive, potentially more expensive, and less likely to succeed 
relative to more resilient landscapes. It is up to the user of the matrix to determine how 
such tradeoffs influence management actions.



20 USDA Forest Service Gen. Tech. Rep. RMRS-GTR-326. 2014

Table 2.  Sage-grouse habitat matrix based on resilience and resistance concepts from Chambers et al. 2014, and 
sage-grouse habitat requirements from Aldridge et al. 2008, Wisdom et al. 2011, and Knick et al. 2013. 
Rows show the ecosystems relative resilience to disturbance and resistance to invasive annual grasses 
derived from the sagebrush ecological types in table 1 (1 = high resilience and resistance; 2 = moderate 
resilience and resistance; 3 = low resilience and resistance). Columns show the current proportion of the 
landscape (5-km rolling window) dominated by sagebrush (A = 1-25% land cover; B = 26-65% land cover; 
3 = >65% land cover). Use of the matrix is explained in text. Overarching management strategies that 
consider resilience and resistance and landscape cover of sagebrush are in table 3. Potential manage-
ment strategies specific to agency program areas, including fire operations, fuels management, post-fire 
rehabilitation, and habitat restoration are in table 4.
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Table 3.  Potential management strategies based on resilience to disturbance, resistance to annual grass invasion, and sage-
grouse habitat requirements based on Aldridge et al. 2008; Wisdom et al. 2011; and Knick et al. 2013 (adapted from 
Chambers et al. 2014).

Conserve – maintain or increase resilience to disturbance and resistance to invasive annuals in areas with high 
conservation value

Priorities	 •	 Ecosystems with low to moderate resilience to fire and resistance to invasive species that still have large 
patches of landscape sagebrush cover and adequate perennial grasses and forbs – ecological types 
with warm and dry and cool and dry soil temperature/moisture regimes.

	 •	 Ecosystems with a high probability of providing habitat for sage-grouse, especially those with >65% 
landscape cover of sagebrush and adequate perennial herbaceous species – all ecological types.

Objective	 •	 Minimize impacts of current and future human-caused disturbances and stressors.
Activities	 •	 Immediately suppress fire in moderate to low resilience and resistance sagebrush and wooded 

shrublands to prevent an invasive annual grass-fire cycle. Large sagebrush patches are high priority for 
protection from wildfires.

	 •	 Implement strategic fuel break networks to provide anchor points for suppression and reduce losses 
when wildfires escape initial attack.

	 •	 Manage livestock grazing to prevent loss of perennial native grasses and forbs and biological soil crusts 
and allow natural regeneration.

	 •	 Limit anthropogenic activities that cause surface disturbance, invasion, and fragmentation. (e.g., road 
and utility corridors, urban expansion, OHV use, and mineral/energy projects).

	 •	 Detect and control new weed infestations.

Prevent – maintain or increase resilience and resistance of areas with declining ecological conditions that are at risk of 
conversion to a degraded, disturbed, or invaded state

Priorities	 •	 Ecosystems with moderate to high resilience and resistance – ecological types with relatively cool and 
moist soil temperature and moisture regimes.

	 ○	 Prioritize landscape patches that exhibit declining conditions due to annual grass invasion and/or 
tree expansion (e.g., at risk phase in State and Transition Models).

	 •	 Ecosystems with a moderate to high probability of providing sage-grouse habitat, especially those with 
26-65% landscape cover of sagebrush and adequate perennial native grasses and forbs – all ecological 
types.

Objectives	 •	 Reduce fuel loads and decrease the risk of high intensity and high severity fire.
	 •	 Increase abundance of perennial native grasses and forbs and of biological soil crusts where they 

naturally occur.
	 •	 Decrease the longer-term risk of annual invasive grass dominance.
Activities	 •	 Use mechanical treatments like cut and leave or mastication to remove trees, decrease woody fuels, 

and release native grasses and forbs in warm and moist big sagebrush ecosystems with relatively 
low resistance to annual invasive grasses that are in the early to mid-phase of piñon and/or juniper 
expansion.

	 •	 Use prescribed fire or mechanical treatments to remove trees, decrease woody fuels, and release native 
grasses and forbs in cool and moist big sagebrush ecosystems with relatively high resistance to annual 
invasive grass that are in early to mid-phase of piñon and/or juniper expansion.

	 •	 Actively manage post-treatment areas to increase perennial herbaceous species and minimize 
secondary weed invasion.

	 •	 Consider the need for strategic fuel breaks to help constrain fire spread or otherwise augment 
suppression efforts.

Restore – increase resilience and resistance of disturbed, degraded, or invaded areas 

Priorities	 •	 Areas burned by wildfire – all ecological types
	 ○	 Prioritize areas with low to moderate resilience and resistance, and that have a reasonable 

expectation of recovery.
	 ○	 Prioritize areas where perennial grasses and forbs have been depleted.
	 ○	 Prioritize areas that experienced high severity fire. 

(continued)
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	 •	 Sage-grouse habitat – all ecological types
	 ○	 Prioritize areas where restoration of sagebrush and/or perennial grasses is needed to create large 

patches of landscape cover of sagebrush or connect existing patches of sagebrush habitat.
	 ○	 Prioritize areas with adequate landscape cover of sagebrush where restoration of perennial grasses 

and forbs is needed.
	 •	 Areas affected by anthropogenic activities that cause surface disturbance, invasion, and fragmentation. 

(e.g., road and utility corridors, urban expansion, OHV use, and mineral/energy projects) – all ecological 
types.

Objectives	 •	 Increase soil stability and curtail dust. 
	 •	 Control/suppress invasive annual grasses and other invasive plants.
	 •	 Increase landscape cover of sagebrush.
	 •	 Increase perennial grasses and forbs and biological soil crusts where they naturally occur.
	 •	 Reduce the risk of large fires that burn sage-grouse habitat.
Activities	 •	 Use integrated strategies to control/suppress annual invasive grass and other annual invaders.
	 •	 Establish and maintain fuel breaks or greenstrips in areas dominated by invasive annual grasses that 

are adjacent to areas with >25% landscape sagebrush cover and adequate perennial native grasses and 
forbs.

	 •	 Seed perennial grasses and forbs that are adapted to local conditions to increase cover of these species 
in areas where they are depleted.

	 •	 Seed and/or transplant sagebrush to restore large patches of sagebrush cover and connect existing 
patches.

	 •	 Repeat restoration treatments if they fail initially to ensure restoration success especially in warm and 
dry soil temperature moisture regimes where weather is often problematic for establishment.

	 •	 Actively manage restored/rehabilitated areas to increase perennial herbaceous species and minimize 
secondary weed invasion.

Monitoring and Adaptive Management– implement comprehensive monitoring to track landscape change and 
management outcomes and provide the basis for adaptive management

Priorities	 •	 Regional environmental gradients to track changes in plant community and other ecosystem attributes 
and expansion or contraction of species ranges – all ecological types.

	 •	 Assess treatment effectiveness – all ecological types. 
Objectives	 •	 Understand effects of wildfire, annual grass invasion, piñon and juniper expansion, climate change and 

other global stressors in sagebrush ecosystems
	 •	 Increase understanding of the long- and short-term outcomes of management treatments.

Activities	 •	 Establish a regional network of monitoring sites that includes major environmental gradients.

	 •	 Collect pre- and post-treatment monitoring data for all major land treatments activities.

	 •	 Collect data on ecosystem status and trends (for example, land cover type, ground cover, vegetation 
cover and height [native and invasive], phase of tree expansion, soil and site stability, oddities).

	 •	 Use consistent methods to monitor indicators.

	 •	 Use a cross-boundary approach that involves all major land owners.
	 •	 Use a common data base for all monitoring results (e.g., Land Treatment Digital Library; http://

greatbasin.wr.usgs.gov/ltdl/).
	 •	 Develop monitoring products that track change and provide management implications and adaptations 

for future management.

	 •	 Support and improve information sharing on treatment effectiveness and monitoring results across 
jurisdictional boundaries (e.g., Great Basin Fire Science Delivery Project; www.gbfiresci.org).

Table 3. (Continued).
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Table 4.  Specific management strategies by agency program area for the cells within the sage-grouse habitat matrix (table 2). 
The rows indicate relative resilience and resistance (numbers) and the columns indicate landscape cover of sagebrush 
by category (letters). Resilience and resistance are based on soil temperature and moisture regimes (fig. 11) and their 
relationship to ecological types (table 1). Percentage of the landscape dominated by sagebrush is based on the capac-
ity of large landscapes to support viable sage-grouse populations over the long term (fig. 8). Note that these guidelines 
are related to the sage-grouse habitat matrix, and do not preclude other factors from consideration when determining 
management priorities for program areas. The “Fire Operations” program area includes preparedness, prevention, and 
suppression activities.

High Resilience to Disturbance and Resistance to Invasive Annual Grasses (1A, 1B, 1C)  

Natural sagebrush recovery is likely to occur. Perennial herbaceous species are sufficient for recovery. Risk of invasive annual 
grasses is typically low.

Fire Operations	 •	 Fire suppression is typically third order priority, but varies with large fire risk and landscape condition 
(cells 1A, 1B, 1C). Scenarios requiring higher priority may include:

	 ○	 Areas of sagebrush that bridge large, contiguous expanses of sagebrush and that are important for 
providing connectivity for sage-grouse (cells 1B, 1C).

	 ○	 Areas where sagebrush communities have been successfully reestablished through seedings or 
other rehabilitation investments (cells 1A, 1B, 1C)

	 ○	 Areas with later phase (Phase III) post-settlement piñon and juniper that have high resistance to 
control, are subject to large and/or severe fires, and place adjacent sage-grouse habitat at risk (cells 
1A, 1B).

	 ○	 All areas when critical burning environment conditions exist. These conditions may be identified by a 
number of products including, but not limited to:  Predictive Services 7-Day Significant Fire Potential 
Forecasts; National Weather Service Fire Weather Watches and Red Flag Warnings; fire behavior 
forecasts or other local knowledge.

Fuels	 •	 Fuels management to reduce large sagebrush stand losses is a second order priority, especially in
Management		  cells 1B and 1C. Management activities include:
	 ○	 Strategic placement of fuel breaks to reduce loss of large sagebrush stands by wildfire. Examples 

include linear features or other strategically placed treatments that serve to constrain fire spread or 
otherwise augment suppression efforts.

	 ○	 Tree removal in early to mid-phase (Phases I, II), post-settlement piñon and juniper expansion areas 
to maintain shrub/herbaceous cover and reduce fuel loads.

	 ○	 Tree removal in later phase (Phase III), post-settlement piñon and juniper areas to reduce risks of 
large or high severity fires. Because these areas represent non-sage-grouse habitat, prescribed fire 
may be appropriate on cool and moist sites, but invasive plant control and restoration of sagebrush 
and perennial native grasses and forbs may be necessary.

Post-Fire	 •	 Post-fire rehabilitation is generally low priority (cells 1A, 1B, 1C). Areas of higher priority include:
Rehabilitation	 ○	 Areas where perennial herbaceous cover, density, and species composition is inadequate for 

recovery.

	 ○	 Areas where seeding or transplanting sagebrush is needed to maintain habitat connectivity for sage-
grouse.

	 ○	 Steep slopes and soils with erosion potential.

Habitat	 •	 Restoration is typically passive and designed to increase or maintain perennial herbaceous species,
Restoration		  biological soil crusts and landscape cover of sagebrush (cells 1A, 1B, 1C).  Areas to consider for active
and Recovery		  restoration include:
	 ○	 Areas where perennial herbaceous cover density, or composition is inadequate for recovery after 

surface disturbance. 

	 ○	 Areas where seeding or transplanting sagebrush is needed to maintain habitat connectivity for sage-
grouse.

Moderate Resilience to Disturbance and Resistance to Invasive Annuals (2A, 2B, 2C)  

Natural sagebrush recovery is likely to occur on cooler and moister sites, but the time required may be too great if large, 
contiguous areas lack sagebrush. Perennial herbaceous species are usually adequate for recovery on cooler and moister sites. 
Risk of invasive annual grasses is moderately high on warmer and drier sites. 

Fire Operations	 •	 Fire suppression is typically second order priority (cells 2A, 2B, 2C). Scenarios requiring higher priority 
may include:

	 ○	 Areas of sagebrush that bridge large, contiguous expanses of sagebrush and that are important for 
providing connectivity for sage-grouse (cells 2B, 2C). (continued)
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	 ○	 Areas where sagebrush communities have been successfully reestablished through seedings or 
other rehabilitation investments (cells 2A, 2B, 2C)

	 ○	 Areas with later phase (Phase III), post-settlement piñon and juniper that have high resistance to 
control, are subject to large and/or severe fires, and place adjacent sage-grouse habitat at risk (cells 
2A, 2B).

	 ○	 Areas where annual grasslands place adjacent sage-grouse habitat at risk (cell 2A).

	 ○	 All areas when critical burning environment conditions exist. These conditions may be identified by a 
number of products including, but not limited to:  Predictive Services 7-Day Significant Fire Potential 
Forecasts; National Weather Service Fire Weather Watches and Red Flag Warnings; fire behavior 
forecasts or other local knowledge.

Fuels	 •	 Fuels management to reduce large sagebrush stand losses is a first order priority, especially in cells 2B
Management		  and 2C. Management activities include:
	 ○	 Strategic placement of fuel breaks to reduce loss of large sagebrush stands by wildfire. Examples 

include linear features or other strategically placed treatments that serve to constrain fire spread or 
otherwise augment suppression efforts. 

	 ○	 Tree removal in early to mid-phase (Phase I, II), post-settlement piñon and juniper expansion areas 
to maintain shrub/herbaceous cover and reduce fuel loads.

	 ○	 Tree removal in later phase (Phase III), post-settlement piñon and juniper areas to reduce risks of 
large or high severity fires. Because these areas represent non-sage-grouse habitat, prescribed 
fire may be appropriate on cool and moist sites, but restoration of sagebrush and perennial native 
grasses and forbs may be necessary.

Post-Fire	 •	 Post-fire rehabilitation is generally low priority (cells 2A, 2B, 2C) in cooler and moister areas. Areas of
Rehabilitation		  higher priority include:  
	 ○	 Areas where perennial herbaceous cover, density, and species composition is inadequate for 

recovery.

	 ○	 Areas where seeding or transplanting sagebrush is needed to maintain habitat connectivity for  
sage-grouse.

	 ○	 Relatively warm and dry areas where annual invasives are expanding.

	 ○	 Steep slopes with erosion potential.

Habitat	 •	 Restoration is typically passive on cooler and moister areas and is designed to increase or maintain
Restoration		  perennial herbaceous species, biological soil crusts, and landscape cover of sagebrush (cells 2A, 2B,
and Recovery		  2C). Areas to consider for active restoration include:

	 ○	 Areas where perennial herbaceous cover, density, and species composition is inadequate for 
recovery after surface disturbance.

	 ○	 Areas where seeding or transplanting sagebrush is needed to maintain habitat connectivity for sage-
grouse.

	 ○	 Relatively warm and dry areas where annual invasives are expanding. 

Low Resilience to Disturbance and Resistance to Invasive Annuals (3A, 3B, 3C)  

Natural sagebrush recovery is not likely. Perennial herbaceous species are typically inadequate for recovery. Risk of invasive 
annual grasses is high. 

Fire	 •	 Fire suppression priority depends on the landscape cover of sagebrush:
Operations	 ○	 Areas with <25% landscape cover of sagebrush are typically third order priority (cell 3A). These 

areas may be a higher priority if they are adjacent to intact sage-grouse habitat or are essential for 
connectivity.

 	 ○	 Areas with 26-65% landscape cover of sagebrush are typically second order priority (cell 3B). These 
areas are higher priority if they have intact understories and if they are adjacent to sage-grouse 
habitat.

	 ○	 Areas with >65% landscape cover of sagebrush are first order priority (cell 3C).

	 ○	 Areas where sagebrush communities have been successfully reestablished through seedings or 
other rehabilitation investments (cells 3A, 3B, 3C).

Table 4. (Continued).

(continued)
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Fuels Management	 •	 Fuels management priority and management activities depend on the landscape cover of sagebrush:

	 ○	 Areas with <25% landscape cover of sagebrush are typically third order priority (cell 3A). Strategic 
placement of fuel breaks may be needed to reduce loss of adjacent sage-grouse habitat by wildfire. 
Examples include linear features or other strategically placed treatments that serve to constrain fire 
spread or otherwise augment suppression efforts.

	 ○	 Areas with 26-65% landscape cover of sagebrush are typically second order priority (cell 3B). These 
areas are higher priority if they have intact understories and if they are adjacent to sage-grouse 
habitat. Strategic placement of fuel breaks may be needed to reduce loss of large sagebrush stands 
by wildfire. 

	 ○	 Areas with >65% landscape cover of sagebrush are first order priority (cell 3C).  Strategic placement 
of fuel breaks may be needed to reduce loss of large sagebrush stands by wildfire. 

	 ○	 Areas where sagebrush communities have been successfully reestablished through seedings 
or other rehabilitation investments (cells 3A, 3B, 3C). Strategic placement of fuel breaks may be 
needed to protect investments from repeated loss to wildfire.

Post-Fire	 •	 Post-fire rehabilitation priority and management activities depend on the landscape cover of sagebrush:  
Rehabilitation	 ○	 Areas with <25% landscape cover of sagebrush are typically third order priority (cell 3A). Exceptions 

include (1) sites that are relatively cool and moist and (2) areas adjacent to sage-grouse habitat 
where seeding can be used to increase connectivity and prevent annual invasive spread. In highly 
invaded areas, integrated strategies that include seeding of perennial herbaceous species and 
seeding and/or transplanting sagebrush will be required. Success will likely require more than one 
intervention due to low and variable precipitation.

	 ○	 Areas with 26-65% landscape cover of sagebrush are typically second order priority (cell 3B). 
Exceptions include (1) sites that are relatively cool and moist or that are not highly invaded, and 
(2) areas adjacent to sage-grouse habitat where seeding can be used to increase connectivity and 
prevent annual invasive spread. Seeding of perennial herbaceous species will be required where 
cover, density and species composition of these species is inadequate for recovery. Seeding and/
or transplanting sagebrush as soon as possible is necessary for rehabilitating sage-grouse habitat. 
Success will likely require more than one intervention due to low and variable precipitation.

	 ○	 Areas with >65% landscape cover of sagebrush are first order priority, especially if they are part of 
a larger, contiguous area of sagebrush (cell 3C). Seeding of perennial herbaceous species will be 
required where cover, density and species composition of these species is inadequate for recovery. 
Seeding and/or transplanting sagebrush as soon as possible is necessary for rehabilitating sage-
grouse habitat. Success will likely require more than one intervention due to low and variable 
precipitation.

Habitat	 •	 Restoration priority and management activities depends on the landscape cover of sagebrush:  
Restoration	 ○	 Areas with <25% landscape cover of sagebrush are typically third order priority.  Exceptions include
and Recovery		  (1) surface disturbances and (2) areas adjacent to sage-grouse habitat where seeding can be 

used to prevent annual invasive spread (cell 3A).  In highly invaded areas, integrated strategies 
that include seeding of perennial herbaceous species and seeding and/or transplanting sagebrush 
will be required. Success will likely require more than one intervention due to low and variable 
precipitation.

	 ○	 Areas with 26-65% landscape cover of sagebrush are typically second order priority (cell 3B). 
Exceptions include (1) surface disturbances, (2) sites that are relatively cool and moist or that are 
not highly invaded, and (3) areas adjacent to sage-grouse habitat where seeding can be used to 
increase connectivity and prevent annual invasive spread. Seeding of perennial herbaceous species 
may be required where cover, density and species composition of these species is inadequate. 
Seeding and/or transplanting sagebrush as soon as possible is necessary for restoring sage-grouse 
habitat. Success will likely require more than one intervention due to low and variable precipitation.

	 ○	 Areas with >65% landscape cover of sagebrush are first order priority, especially if they are part of 
a larger, contiguous area of sagebrush (cell 3C). Seeding of perennial herbaceous species may be 
required where cover, density, and species composition of these species is inadequate. Seeding 
and/or transplanting sagebrush as soon as possible is necessary for restoring sage-grouse habitat. 
Success will likely require more than one intervention due to low and variable precipitation.

Table 4. (Continued).
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Another important consideration is that ecological processes such as wildfire can occur 
either within or across categories in the sage-grouse habitat matrix and it is necessary 
to determine the appropriate spatial context when evaluating management opportuni-
ties based on resilience and resistance and sage-grouse habitat. For example, if critical 
sage-grouse habitat occurs in close proximity to landscapes comprised mainly of annual 
grass-dominated plant communities, then fire risk to adjacent sage-grouse habitat can 
increase dramatically (Balch et al. 2013). In this scenario, management actions could 
include reducing the influence of invasive annual grasses with a strategic fuel break 
on the perimeter of intact sagebrush. Thus, management actions may have value to 
sustaining existing sage-grouse habitat, even if these measures are applied in locations 
that are currently not habitat; the spatial relationships of sagebrush and invasive annual 
grasses should be considered when prioritizing management actions and associated 
conservation measures.

Informing Wildfire and Fuels Management Strategies to Conserve Sage-
Grouse___________________________________________________________

Collectively, responses to wildfires and implementation of fuels management proj-
ects are important contributors to sage-grouse conservation. Resilience and resistance 
concepts provide a science-based background that can inform fire operations and fuels 
management strategies and allocation of scarce assets during periods of high fire ac-
tivity. In fire operations, firefighter and public safety is the overriding objective in all 
decisions. In addition, land managers consider numerous other values at risk, including 
the Wildland-Urban Interface (WUI), habitats, and infrastructure when allocating assets 
and prioritizing efforts. Resilience and resistance concepts are especially relevant for 
evaluating tradeoffs related to current ecological conditions and rates of recovery and 
possible ecological consequences of different fire management activities. For example, 
prioritizing initial attack efforts based on ecological types and their resilience and 
resistance at fire locations is a possible future application of resilience and resistance 
concepts. Also, fire prevention efforts can be concentrated where human ignitions have 
commonly occurred near intact, high quality habitats that also have inherently low 
resilience and resistance.

Fuels management projects are often applied to (1) constrain or minimize fire spread; 
(2) alter species composition; (3) modify fire intensity, severity, or effects; or (4) cre-
ate fuel breaks or anchor points that augment fire management efforts (fig. 13). These 
activities are selectively used based on the projected ecosystem response, anticipated 
fire patterns, and probability of success. For example, in areas that are difficult to restore 
due to low to moderate resilience, fuel treatments can be placed to minimize fire spread 
and conserve sagebrush habitat. In cooler and moister areas with moderate to high re-
silience and resistance, mechanical or prescribed fire treatments may be appropriate to 
prevent conifer expansion and dominance. Given projected climate change and longer 
fire seasons across the western United States, fuels management represents a proactive 
approach for modifying large fire trends. Fire operations and fuels management programs 
contribute to a strategic, landscape approach when coupled with data that illustrate the 
likelihood of fire occurrence, potential fire behavior, and risk assessments (Finney et al. 
2010; Oregon Department of Forestry 2013). In tandem with resilience and resistance 
concepts, these data can further inform fire operations and fuels management decisions.
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Figure 13. Fuel breaks may include roads, natural features, or other management imposed 
treatments intended to modify fire behavior or otherwise augment suppression efforts at 
the time of a fire. Such changes in fuel type and arrangement may improve suppression 
effectiveness by modifying flame length and fire intensity, and allow fire operations to be 
conducted more safely. The top photo shows a burnout operation along an existing road to 
remove available fuels ahead of an oncoming fire and constrain overall fire growth (photo 
by BLM Idaho Falls District). The bottom photo shows fuel breaks located along a road, 
which complimented fire control efforts when a fire intersected the fuel break and road 
from the right (photo by Ben Dyer, BLM).
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Putting it all Together_______________________________________________
Effective management and restoration of sage-grouse habitat will benefit from a col-

laborative approach that prioritizes the best management practices in the most appropri-
ate places. This section describes an approach for assessing focal areas for sage-grouse 
habitat management based on widely available data, including (1) Priority Areas for 
Conservation (PACs), (2) breeding bird densities, (3) habitat suitability as indicated by 
the landscape cover of sagebrush, (4) resilience and resistance and dominant ecological 
types as indicated by soil temperature and moisture regimes, and (5) habitat threats as 
indicated by cover of cheatgrass, cover of piñon and juniper, and by fire history. 
Breeding bird density data are overlain with landscape cover of sagebrush and with 
resilience and resistance to spatially link sage-grouse populations with habitat conditions 
and risks. We illustrate the use of this step-down approach for evaluating focal areas 
for sage-grouse habitat management across the western portion of the range, and we 
provide a detailed example for a diverse area in the northeast corner of Nevada that is 
comprised largely of PACs with mixed land ownership. The sage-grouse habitat matrix 
(table 2) is used as a tool in the decision process, and guidelines are provided to assist 
in determining appropriate management strategies for the primary agency program 
areas (fire operations, fuels management, post-fire rehabilitation, habitat restoration) 
for each cell of the matrix.

We conclude with discussions of the tools available to aid in determining the suit-
ability of an area for treatment and the most appropriate management treatments such 
as ecological site descriptions and state and transition models and of monitoring and 
adaptive management. Datasets used to compile the maps in the following sections are 
in Appendix 4.

Assessing Focal Areas for Sage-Grouse Habitat Management: Key Data Layers

Priority areas for conservation: The recent identification of sage-grouse strong-
holds, or Priority Areas for Conservation (PACs), greatly improves the ability to target 
management actions towards habitats expected to be critical for long-term viability of 
the species (fig. 14; USFWS 2013). Understanding and minimizing risks of large-scale 
loss of sagebrush and conversion to invasive annual grasses or piñon and juniper in and 
around PACs will be integral to maintaining sage-grouse distribution and stabilizing 
population trends. PACs were developed by individual states to identify those areas that 
are critical for ensuring adequate representation, redundance, and resilience to conserve 
sage-grouse populations. Methods differed among states; in general, PAC boundaries 
were identified based on (1) sage-grouse population data including breeding bird density, 
lek counts, telemetry, nesting areas, known distributions, and sightings/observations; and 
(2) habitat data including occupied habitat, suitable habitat, seasonal habitat, nesting and 
brood rearing areas, and connectivity areas or corridors. Sage-grouse habitats outside of 
PACs also are important in assessing focal areas for management where they provide 
connectivity between PACs (genetic and habitat linkages), seasonal habitats that may 
have been underestimated due to emphasis on lek sites to define priority areas, habitat 
restoration and population expansion opportunities, and flexibility for managing habitat 
changes that may result from climate change (USFWS 2013). If PAC boundaries are 
adjusted, they will need to be updated for future analyses.
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Figure 14. Priority Areas for Conservation (PACs) within the range of sage-grouse (USFWS 2013). Colored polygons within Man-
agement Zones delineate Priority Areas for Conservation (USFWS 2013).
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Breeding bird density: Range-wide breeding bird density areas provide one of the 
few accessible data sets for further prioritizing actions within and adjacent to PACs to 
maintain species distribution and abundance. Doherty et al. (2010b) developed a useful 
framework for incorporating population data in their range-wide breeding bird density 
analysis, which used maximum counts of males on leks (n = 4,885) to delineate breeding 
bird density areas that contain 25, 50, 75, and 100% of the known breeding population 
(fig. 15). Leks were mapped according to these abundance values and buffered by a 6.4 
to 8.5 km (4.0 to 5.3 mi) radius to delineate nesting areas. Findings showed that while 
sage-grouse occupy extremely large landscapes, their breeding distribution is highly 
aggregated in comparably smaller identifiable population centers; 25% of the known 
population occurs within 3.9% (2.9 million ha; 7.2 million ac) of the species range, and 
75% of birds are within 27.0% of the species range (20.4 million ha; 50.4 million ac) 
(Doherty et al. 2010b). The Doherty et al. (2010b) analysis emphasized breeding habitats 
primarily because little broad scale data exist for summer and winter habitat use areas. 
Even though the current breeding bird density data provide the most comprehensive 
data available, they do not include all existing sage-grouse populations. Incorporating 
finer scale seasonal habitat use data at local levels where it is available will ensure 
management actions encompass all seasonal habitat requirements.

For this assessment, we chose to use State-level breeding bird density results from 
Doherty et al. (2010b) instead of range-wide model results to ensure that important 
breeding areas in MZs III, IV, and V were not underweighted due to relatively higher 
bird densities in the eastern portion of the range. It is important to note that breeding 
density areas were identified using best available information in 2009, so these range-
wide data do not reflect the most current lek count information or changes in conditions 
since the original analysis. Also, breeding density areas should not be viewed as rigid 
boundaries but rather as the means to prioritize landscapes regionally where step-down 
assessments and actions may be implemented quickly to conserve the most birds.

Landscape cover of sagebrush: Landscape cover of sagebrush is one of the key 
determinants of sage-grouse population persistence and, in combination with an under-
standing of resilience to disturbance and resistance to invasive annuals, provides essential 
information both for determining priority areas for management and appropriate man-
agement actions (fig. 10; tables 2 and 3). Landscape cover of sagebrush is a measure of 
large, contiguous patches of sagebrush on the landscape and is calculated from remote 
sensing databases such as LANDFIRE (see Appendix 4). We used the three cover cat-
egories of sagebrush landscape cover discussed previously to predict the likelihood of 
sustaining sage-grouse populations (1-25%, 25-65%, >65%). The sagebrush landscape 
cover datasets were created using a moving window to summarize the proportion of 
area (5-km [3.1-mi] radius) dominated by sagebrush surrounding each 30-m pixel and 
then assigned those areas to the three categories (see Appendix 2). Because available 
sagebrush cover from sources such as LANDFIRE does not exclude recent fire pe-
rimeters, it was necessary to either include these in the analysis of landscape cover of 
sagebrush or display them separately. Although areas that have burned since 2000 likely 
do not currently provide desired sage-grouse habitat, areas with the potential to support 
sagebrush ecological types can provide conservation benefits in the overall planning 
effort especially within long-term conservation areas like PACs. The landscape cover of 
sagebrush and recent fire perimeters are illustrated for the western portion of the range 
(fig.16) and northeast Nevada (fig. 17).
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Figure 15. Range-wide sage-grouse breeding bird densities from Doherty et al. 2010. Points illustrate breeding bird density 
areas that contain 25, 50, 75, and 100% of the known breeding population and are based on maximum counts of males 
on leks (n = 4,885). Leks were mapped according to abundance values and buffered by 6.4 to 8.5 km (4.0 to 5.2 mi) to 
delineate nesting areas. 
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Figure 16. The landscape cover of sagebrush within each of three selected categories (1-25%, 26-65%, >65%) for Man-
agement Zones III, IV, and V (Stiver et al. 2006). The proportion of sagebrush (USGS 2013) within each of the categories 
in a 5-km (3.1-mi) radius surrounding each pixel was calculated relative to other land cover types for locations with sage-
brush cover. Darker colored polygons within Management Zones delineate Priority Areas for Conservation (USFWS 2013).
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Figure 17. The landscape cover of sagebrush within each of the selected categories (1-25%, 26-65%, >65%) for the north-
eastern portion of Nevada. The proportion of sagebrush (USGS 2013) within each of the categories in a 5-km (3.1-mi) radius 
surrounding each pixel was calculated relative to other land cover types for locations with sagebrush cover. Darker colored 
polygons delineate Priority Areas for Conservation (USFWS 2013).
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Resilience to disturbance and resistance to annuals: Soil temperature and mois-
ture regimes are a strong indicator of ecological types and of resilience to disturbance 
and resistance to invasive annual plants (fig. 11; table 1). Resilience and resistance 
predictions coupled with landscape cover of sagebrush can provide critical informa-
tion for determining focal areas for targeted management actions (tables 2, 3, and 4). 
The available data for the soil temperature and moisture regimes were recently com-
piled to predict resilience and resistance (see Appendix 3). These data, displayed for 
the western portion of the range and northeast Nevada (figs. 18 and 19), illustrate the 
spatial variability within the focal areas. Soil temperature and moisture regimes are two 
of the primary determinants of ecological types and of more detailed ecological site 
descriptions, which are described in the section on “Determining the Most Appropriate 
Management Treatments at the Project Scale.”

Habitat threats: Examining additional land cover data or models of invasive an-
nual grasses and piñon and/or juniper, can provide insights into the current extent of 
threats in a planning area (e.g., Manier et al. 2013). In addition, evaluating data on fire 
occurrence and size can provide information on fire history and the rate and pattern of 
change within the planning area. Data layers for cheatgrass cover have been derived 
from Landsat imagery (Peterson 2006, 2007) and from model predictions based on 
species occurrence, climate variables, and anthropogenic disturbance (e.g., the Bureau 
of Land Management [BLM] Rapid Ecoregional Assessments [REAs]). The REAs con-
tain a large amount of geospatial data that may be useful in providing landscape scale 
information on invasive species, disturbances, and vegetation types across most of the 
range of sage-grouse (http://www.blm.gov/wo/st/en/prog/more/Landscape_Approach/
reas.html). Similarly, geospatial data for piñon and/or juniper have been developed 
for various States (e.g., Nevada and Oregon) and are becoming increasingly available 
rangewide. In addition, more refined data products are often available at local scales. 
Land managers can evaluate the available land cover datasets and select those land cov-
ers with the highest resolution and accuracy for the focal area. Land cover of cheatgrass 
and piñon and/or juniper and the fire history of the western portion of the range and 
northeast Nevada are in figures 20-25.

Assessing Focal Areas for Sage-Grouse Habitat Management: Integrating Data Layers

Combining resilience and resistance concepts with sage-grouse habitat and popula-
tion data can help land managers further gauge relative risks across large landscapes 
and determine where to focus limited resources to conserve sage-grouse populations. 
Intersecting breeding bird density areas with soil temperature and moisture regimes 
provides a spatial tool to depict landscapes with high bird concentrations that may have 
a higher relative risk of being negatively affected by fire and annual grasses (figs. 26, 
27). For prioritization purposes, areas supporting 75% of birds (6.4 to 8.5 km [4.0 to 
5.2 mi] buffer around leks) can be categorized as high density while remaining breed-
ing bird density areas (75-100% category; 8.5-km [5.2-mi] buffer around leks) can be 
categorized as low density. Similarly, warm and dry types can be categorized as having 
relatively low resilience to fire and resistance to invasive species and all other soil tem-
perature and moisture regimes can be categorized as having relatively moderate to high 
resilience and resistance. Intersecting breeding bird density areas with landscape cover of 
sagebrush provides another spatial component revealing large and intact habitat blocks 
and areas in need of potential restoration to provide continued connectivity (fig. 28).
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Figure 18.  The soil temperature and moisture regimes within sage-grouse Management Zones III, IV, and V (Stiver 
et al. 2006). Soil temperature and moisture classes were derived from the Natural Resources Conservation Service 
(NRCS) Soil Survey Geographic Database (SSURGO) (Soil Survey Staff 2014a). Gaps in that dataset were filled 
in with the NRCS State Soil Geographic Database (STATSGO) (Soil Survey Staff 2014b). Darker colored polygons 
within Management Zones delineate Priority Areas for Conservation (USFWS 2013).
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Figure 19.  The soil temperature and moisture regimes for the northeast corner of Nevada. Soil temperature and moisture 
classes were derived from the Natural Resources Conservation Service (NRCS) Soil Survey Geographic Database (SSURGO) 
(Soil Survey Staff 2014a). Gaps in that dataset were filled in with the NRCS State Soil Geographic Database (STATSGO) 
(Soil Survey Staff 2014b). Darker colored polygons delineate Priority Areas for Conservation (USFWS 2013).
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Figure 20.  Invasive annual grass index for Nevada (Peterson 2006) and the Owhyee uplands (Peterson 2007) displayed 
for sage-grouse Management Zones III, IV, and V (Stiver et al. 2006). Lighter colored polygons within Management Zones 
delineate Priority Areas for Conservation (USFWS 2013).
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Figure 21.  Invasive annual grass index for Nevada (Peterson 2006) and the Owhyee uplands (Peterson 2007) displayed for 
the northeast corner of Nevada. Lighter colored polygons delineate Priority Areas for Conservation (USFWS 2013).
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Figure 22.  Piñon and/or juniper woodlands (USGS 2004; USGS 2013) within sage-grouse Management Zones III, IV, and V 
(Stiver et al. 2006). Lighter colored polygons within Management Zones delineate Priority Areas for Conservation (USFWS 2013). 
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Figure 23.  Piñon and/or juniper woodlands (USGS 2004; USGS 2013) within the northeast corner of Nevada. Lighter colored 
polygons delineate Priority Areas for Conservation (USFWS 2013).
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Figure 24.  Fire perimeters (Walters et al. 2011; Butler and Bailey 2013) within sage-grouse Management Zones III, IV, 
and V (Stiver et al. 2006). Ligher colored polygons within Management Zones delineate Priority Areas for Conservation 
(USFWS 2013).
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Figure 25.  Fire perimeters (Walters et al. 2011; Butler and Bailey 2013) within the northeast corner of Nevada. Lighter 
colored polygons delineate Priority Areas for Conservation (USFWS 2013).
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Figure 26.  Sage-grouse breeding bird densities (Doherty et al. 2010) for high breeding bird densities (areas that contain 
75% of known breeding bird populations) and low breeding bird densities (areas that contain all remaining breeding 
bird populations) relative to resilience and resistance within sage-grouse Management Zones III, IV, and V (Stiver et al. 
2006). Relative resilience and resistance groups are derived from soil moisture and temperature classes (Soil Survey 
Staff 2014a, b) as described in text, and indicate risk of invasive annual grasses and wildfire. Lighter colored polygons 
within Management Zones delineate Priority Areas for Conservation (USFWS 2013). 
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Figure 27.  Sage-grouse breeding bird densities (Doherty et al. 2010) for high breeding bird densities (areas that contain 
75% of known breeding bird populations) and low breeding bird densities (areas that contain all remaining breeding bird 
populations) relative to resilience and resistance in the northeast corner of Nevada. Relative resilience and resistance 
groups are derived from soil moisture and temperature classes (Soil Survey Staff 2014a, b) as described in text, and in-
dicate risk of invasive annual grasses and wildfire. Lighter colored polygons within Management Zones delineate Priority 
Areas for Conservation (USFWS 2013).
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Figure 28.  Sage-grouse breeding bird densities (Doherty et al. 2010) for high breeding bird densities (areas that contain 
75% of known breeding bird populations) and low breeding bird densities (areas that contain all remaining breeding bird 
populations) relative to sagebrush cover. Lighter colored polygons within Management Zones delineate Priority Areas for 
Conservation (USFWS 2013).
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Resilience and resistance and sagebrush cover combined with bird population den-
sity data provide land managers a way to evaluate trade-offs of particular management 
options at the landscape scale. For example, high density, low resilience and resistance 
landscapes with >65% sagebrush landscape cover may require immediate attention for 
conservation efforts because they currently support a high concentration of birds but 
have the lowest potential to recover to desired conditions post-fire and to resist inva-
sive plants when disturbed. Similarly, high density but moderate-to-high resilience and 
resistance landscapes with 26-65% sagebrush cover may be priorities for preventative 
actions like conifer removal designed to increase the proportion of sagebrush cover and 
maintain ecosystem resilience and resistance. Mapping relative resilience and resistance 
and landscape cover of sagebrush for sage-grouse breeding areas should be viewed as 
a component of the assessment process that can help local managers allocate resources 
to accelerate planning and implementation.

Interpretations at the Management Zone (MZ) Scale: Western Portion of the Range

An examination of land cover and additional data layers for the western portion of 
the range reveals large differences among Management Zones (MZs) III, IV and V. MZs 
IV and V have larger areas with sagebrush cover >65% than MZ III (fig. 16). This may 
be partly explained by basin and range topography in MZ III, which is characterized by 
large differences in both environmental conditions and ecological types over relatively 
short distances. However, the cover of piñon and juniper in and adjacent to PACs in 
MZ III also is higher than in either MZ IV or V (fig. 22). The greater cover of piñon 
and juniper in MZ III appears to largely explain the smaller patches of sagebrush cover 
in the 26-65% and >65% categories.

Our capacity to quantify understory vegetation cover using remotely sensed data is 
currently limiting, but a visual examination of estimates for invasive annual grass (fig. 
20; Peterson 2006, 2007) suggests a higher index (greater cover) in areas with relatively 
low resistance (warm soil temperatures) in all MZs (see fig. 18). This is consistent with 
current understanding of resistance to cheatgrass (Chambers et al. 2014; Chambers et 
al. in press). It is noteworthy that the invasive annual grass index is low for most of 
the central basin and range (central Nevada). Several factors may be contributing to 
the low index for this area including climate, the stage of piñon and juniper expansion 
and linked decrease in fire frequency, the relative lack of human development, and the 
relative lack of management treatments in recent decades (Wisdom et al. 2005; Miller 
et al. 2011). Not surprisingly, areas with a high annual grass index are outside or on 
the periphery of current PACs. However, it is likely that invasive annual grasses are 
present on many warmer sites and that they may increase following fire or other 
disturbances. In areas with low resistance to invasive annual grasses, they often ex-
ist in the understory of sagebrush ecosystems and are not detected by remote sensing 
platforms such as Landsat.

The number of hectares burned has been highest in MZ IV, adjacent areas in MZ V, 
and in areas with relatively low resilience and resistance in the northern portion of MZ 
III that have a high invasive annual grass index (figs. 18, 20, 24). A total of over 1.1 
million hectares (2.7 million acres) burned in 2000 and 2006, while over 1.7 million 
hectares (4.2 million acres) burned in 2007 and 2012 and almost three quarters of these 
acres were in MZ IV (table 5). In some cases, these fires appear to be linked to the 
annual invasive grass index, but in others it clearly is not. At this point, there appears 
to be little relationship between cover of piñon and juniper and wildfire. Mega-fires 
comprised of hundreds of thousands of acres have burned in recent years, especially 
in MZ IV. These fires have occurred primarily in areas with low to moderate resilience 
and resistance and during periods with extreme burning conditions.
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Coupling breeding bird densities with landscape cover of sagebrush indicates that 
populations with low densities tend to occur in areas where sagebrush cover is in the 26-
65% category, and few populations occur in areas with <25% sagebrush cover (fig. 27) 
(Knick et al. 2013). Combining the breeding bird densities with resilience and resistance 
indicates significant variability in risks among high density populations within PACs 
(fig. 26). A large proportion of remaining high density centers within PACs occurs on 
moderate-to-high resilience and resistance habitats, while low density/low resilience 
and resistance areas tend to occur along the periphery of PACs or are disproportionately 
located in MZ III and southern parts of MZ V.

Examination of other data layers suggests that different wildfire and invasive species 
threats exist across the western portion of the range, and that management should target 
the primary threats to sage-grouse habitat within focal areas. In MZs IV and V invasive 
annual grasses—especially on the periphery of the PACs—and wildfire are key threats. 
However, recent wildfires are not necessarily linked to invasive annual grasses. This 
suggests that management strategies for these MZs emphasize fire operations, fuels 
management focused on decreasing fire spread, and integrated strategies to control annual 
grasses and increase post-fire rehabilitation and restoration success. Differences in piñon 
and/or juniper landscape cover exist among MZs with 5,131,900 ha (12,681,202 ac) in 
MZ III, 528,377ha (1,305,649 ac) in MZ IV, and 558,880 ha (1,381,024 ac) in MZ V. 
Portions of MZs IV and V are still largely in early stages of juniper expansion indicat-
ing a need to address this threat before woodland succession progresses. Because of 
generally low resilience and resistance in MZ III, greater emphasis is needed on habitat 
conservation, specifically minimizing or eliminating stressors. Also, greater emphasis 
on reducing cover of piñon and juniper is needed to reduce woody fuels and increase 
sagebrush ecosystem resilience to fire by increasing the recovery potential of native 
understory species.

Table 5. The number of hectares (acres) burned in Management Zones III, IV, and V each year from 2000 to 2013. 

	 Management	 Management	 Management
Year 	 Zone III	 Zone IV	 Zone V	 Total

2000	 155,159	 (383,405)	 868,118	 (2,145,165)	 88,871	 (219,606)	 1,112,148	 (2,748,176)
2001	 164,436	 (406,330)	 272,870	 (674,276)	 141,454	 (349,541)	 578,760	 (1,430,147)
2002	 85,969	 (212,433)	 100,308	 (247,867)	 113,555	 (280,601)	 299,833	 (740,902)
2003	 21,869	 (54,038)	 127,028	 (313,892)	 27,597	 (68,192)	 176,493	 (436,123)
2004	 20,477	 (50,600)	 11,344	 (28,032)	 13,037	 (32,216)	 44,858	 (110,847)
2005	 45,130	 (111,520)	 374,894	 (926,382)	 22,039	 (54,458)	 442,063	 (1,092,360)
2006	 198,762	 (491,150)	 860,368	 (2,126,014)	 117,452	 (290,230)	 1,176,582	 (2,907,394)
2007	 371,154	 (917,140)	 1,240,303	 (3,064,853)	 134,520	 (332,406)	 1,745,977	 (4,314,399)
2008	 14,015	 (34,632)	 109,151	 (269,717)	 43,949	 (108,599)	 167,115	 (412,949)
2009	 43,399	 (107,242)	 12,250	 (30,271)	 47,918	 (118,408)	 103,568	 (255,921)
2010	 31,597	 (78,078)	 280,662	 (693,531)	 21,940	 (54,216)	 334,200	 (825,825)
2011	 83,411	 (206,114)	 283,675	 (700,977)	 22,909	 (56,608)	 389,995	 (963,699)
2012	 203,680	 (503,303)	 946,514	 (2,338,885)	 574,308	 (1,419,144)	 1,724,501	 (4,261,331)
2013	 45,976	 (113,610)	 368,434	 (910,419)	 15,852	 (39,170)	 430,262	 (1,063,199)

Total	 1,485,034	 (3,669,595)	 5,855,920	 (14,470,281)	 1,385,400	 (3,423,396)	 8,726,354	 (21,563,271)
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Interpretations at Regional and Local Land Management Scales: Northeast Nevada 
Example

The same land covers and data layers used to assess focal areas for sage-grouse 
habitat within MZs in the western portion of the species range can be used to evaluate 
focal areas for management in regional planning areas and land management planning 
units. The emphasis at the scale of the land planning area or management planning unit 
is on maintaining or increasing large contiguous areas of sagebrush habitat with covers 
in the 26-65% and especially >65% category. Resilience to disturbance and resistance 
to invasive annual grasses as indicated by soil temperature and moisture regimes is 
used to determine the most appropriate activities within the different cover categories. 
The sage-grouse habitat matrix in table 2 describes the capacity of areas with differing 
resilience and resistance to recover following disturbance and resist annual invasive 
grasses and provides the management implications for each of the different cover cat-
egories. Table 4 provides potential management strategies for the different sagebrush 
cover and resilience and resistance categories (cells) in the sage-grouse habitat matrix 
by agency program areas (fire operations, fuels management, post-fire rehabilitation, 
habitat restoration). Note that the guidelines in table 4 are related to the sage-grouse 
habitat matrix, and do not preclude other factors from consideration when determining 
management priorities for program areas.

Here, we provide an example of how to apply the concepts and tools discussed in 
this report by examining an important region identified in the MZ scale assessment. The 
northeastern corner of Nevada was selected to illustrate the diversity of sage-grouse 
habitat within planning areas and the need for proactive collaboration both within agen-
cies and across jurisdictional boundaries in devising appropriate management strategies 
(figs. 17, 19, 21, 23, 25). This part of Nevada has large areas of invasive annual grasses 
and areas with piñon and juniper expansion, and it has experienced multiple large fires 
in the last decade. It includes a BLM Field Office, Forest Service (FS) land, State land, 
multiple private owners, and borders two States (fig. 29), which results in both complex 
ownership and natural complexity.

In the northeast corner of Nevada, an area 5,403,877 ha (13,353,271 ac) in size, 
numerous large fires have burned in and around PACs (fig. 25). Since 2000, a total of 
1,144,317 ha (2,827,669 ac) have burned with the largest fires occurring in 2000, 2006, 
and 2007. This suggests that the primary management emphasis be on retaining exist-
ing areas of sagebrush in the 26-65% and especially >65% categories and promoting 
recovery of former sagebrush areas that have burned. Fire suppression in and around 
large, contiguous areas of sagebrush and also in and around successful habitat restora-
tion or post-fire rehabilitation treatments is a first order priority. Fuels management also 
is a high priority and is focused on strategic placement of fuel breaks to reduce loss of 
large sagebrush stands by wildfire without jeopardizing existing habitat quality. Also, 
in the eastern portion of the area, piñon and juniper land cover comprises 471,645 ha 
(1,165,459 ac) (fig. 23). In this area, management priorities include (1) targeted tree 
removal in early to mid-phase (Phase I and II), post-settlement piñon and juniper expan-
sion areas to maintain shrub/herbaceous cover and reduce fuel loads, and (2) targeted tree 
removal in later phase (Phase III) post-settlement piñon and juniper areas to reduce risk 
of high severity fire. In areas with moderate to high resilience and resistance, post-fire 
rehabilitation focuses on accelerating sagebrush establishment and recovery of peren-
nial native herbaceous species. These areas often are capable of unassisted recovery 
and seeding is likely needed only in areas where perennial native herbaceous species 
have been depleted (Miller et al. 2013). Seeding introduced species can retard recovery 
of native perennial grasses and forbs that are important to sage-grouse and should be 
avoided in these areas (Knutson et al. 2014). Seeding or transplanting of sagebrush may 
be needed to accelerate establishment in focal areas.
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Figure 29. Land ownership for the northeast corner of Nevada. Lighter colored polygons delineate Priority Areas for Con-
servation (USFWS 2013).
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In areas with lower resilience and resistance and high breeding bird densities, large, 
contiguous areas of sagebrush with intact understories are a high priority for conserva-
tion (figs. 17, 19, 27). In these areas, emphasis is on maintaining or increasing habitat 
conditions by minimizing stressors and disturbance. Post-fire rehabilitation and resto-
ration activities focus on areas that increase connectivity among existing large areas 
of sagebrush. Because of low and variable precipitation, more than one intervention 
may be required to achieve restoration or rehabilitation goals. Appropriately managing 
livestock, wild horse and burro use (if applicable), and recreational use in focal areas is 
especially important to promote native perennial grass and forb growth and reproduc-
tion and to maintain or enhance resilience and resistance.

Determining the Most Appropriate Management Treatments at the Project Scale

Once focal areas and management priorities have been determined, potential treat-
ment areas can be assessed to determine treatment feasibility and appropriate treatment 
methods. Different treatment options exist (figs. 30, 31) that differ in both suitability 
for a focal area and likely effectiveness. Field guides for sagebrush ecosystems and 
piñon and juniper expansion areas that incorporate resilience and resistance concepts 
are being developed to help guide managers through the process of determining both 
the suitability of an area for treatment and the most appropriate treatment. These guides 
are aligned with the different program areas and emphasize (1) fuel treatments (Miller 
et al. 2014a), (2) post-fire rehabilitation (Miller et al. 2014b), and (3) restoration (Pyke 
et al., in preparation). Additional information on implementing these types of manage-
ment treatments is synthesized in Monsen et al. (2004) and Pyke (2011); additional 
information on treatment response is synthesized in Miller et al. (2013). In this section, 
we summarize the major steps in the process for determining the suitability of an area 
for treatment and the most appropriate treatment. We then provide an overview of two 
of the primary tools in the assessment process – ecological site descriptions (ESDs) and 
state and transition models (STMs). We conclude with a discussion of the importance 
of monitoring and adaptive management.

Steps in the process: Logical steps in the process of determining the suitability of 
an area for treatment and the most appropriate treatment(s) include (1) assessing the 
potential treatment area and identifying ecological sites, (2) determining the current 
successional state of the site, (3) selecting the appropriate action(s), and (4) monitoring 
and evaluation to determine post-treatment management. A general approach that uses 
questions to identify the information required in each step was developed (table 6). 
These questions can be modified to include the specific information needed for each 
program area and for treating different ecological sites. This format is used in the field 
guides described above.
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Figure 30. Common vegetation treatments for sagebrush dominated ecosystems with relatively 
low resilience and resistance include seeding after wildfire in areas that lack sufficient native 
perennial grasses and forbs for recovery (top) (photo by Chad Boyd), and mowing sagebrush to 
reinvigorate native perennial grasses and forbs in the understory (bottom) (photo by Scott Schaff). 
Success of mowing treatments depends on having adequate perennial grasses and forbs on the 
site to resist invasive annual grasses and to promote recovery.
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Figure 31. Vegetation treatments for sagebrush 
ecosystems exhibiting piñon and juniper expansion 
include cutting the trees with chainsaws and leaving 
them in place (top) (photo by Jeremy Roberts) and 
shredding them with a “bullhog” (middle) (photo by 
Bruce A. Roundy) on sites with relatively warm soils and 
moderately low resistance to cheatgrass. Prescribed 
fire (bottom) (photo by Jeanne C. Chambers) can be 
a viable treatment on sites with relatively cool and 
moist soils that have higher resilience to disturbance 
and resistance to invasive annual grasses. Treat-
ment success depends on having adequate perennial 
grasses and forbs on the site to resist invasive annual 
grasses and promote recovery and will be highest on 
sites with relatively low densities of trees (Phase I to 
Phase II woodlands).
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Table 6. General guidelines for conducting fuels management, fire rehabilitation, and restoration treatments (modified from 
Miller et al. 2007; Tausch et al. 2009; Pyke 2011; Chambers et al. 2013).

	 Steps in the process	 Questions and considerations

	 I.	 Assess potential treatment	 1.	 Where are priority areas for fuels management, fire rehabilitation or
		  area and identify ecological			   restoration within the focal area? Consider sage-grouse habitat
		  sites			   needs and resilience and resistance.
			   2.	 What are the topographic characteristics and soils of the area? Verify 

soils mapped to the location and determine soil temperature/moisture 
regimes. Collect information on soil texture, depth and basic chemistry 
for restoration projects.

			   3.	 How will topographic characteristics and soils affect vegetation recovery, 
plant establishment and erosion? Evaluate erosion risk based on to-
pography and soil characteristics. 

			   4.	 What are the potential native plant communities for the area? Match soil 
components to their correlated ESDs. This provides a list of potential 
species for the site(s).

	 II.	 Determine current state 	 5.	 Is the area still within the reference state for the ecological site(s)? 
		  of the site	

	 III.	 Select appropriate action	 6.	 How far do sites deviate from the reference state? How will treatment 
success be measured?

			   7.	 Do sufficient perennial shrubs and perennial grasses and forbs exist to 
facilitate recovery? 

			   8.	 Are invasive species a minor component?   
			   9.	 Do invasive species dominate the sites while native life forms are miss-

ing or severely under represented?  If so, active restoration is required 
to restore habitat.

			   10.	 Are species from drier or warmer ecological sites present? Restoration 
with species from the drier or warmer sites should be considered. 

			   11.	 Have soils or other aspects of the physical environment been altered? 
Sites may have crossed a threshold and represent a new ecological 
site type requiring new site-specific treatment/restoration approaches.

	 IV.	 Determine post-treatment 	 12.	 How long should the sites be protected before land uses begin? In
		  management			   general, sites with lower resilience and resistance should be protected 

for longer periods. 
			   13.	 How will monitoring be performed? Treatment effectiveness monitoring 

includes a complete set of measurements, analyses, and a report.
			   14.	 Are adjustments to the approach needed? Adaptive management is 

applied to future projects based on consistent findings from multiple 
locations.
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Ecological site descriptions: ESDs and their associated STMs provide essential 
information for determining treatment feasibility and type of treatment. ESDs are part 
of a land classification system that describes the potential of a set of climate, topo-
graphic, and soil characteristics and natural disturbances to support a dynamic set of 
plant communities (Bestelmeyer et al. 2009; Stringham et al. 2003). NRCS soil survey 
data (http://soils.usda.gov/survey/), including soil temperature/moisture regimes and 
other soil characteristics, are integral to ESD development. ESDs have been developed 
by the NRCS and their partners to assist land management agencies and private land 
owners with making resource decisions, and are widely available for the Sage-grouse 
MZs except where soil surveys have not been completed (for a detailed description of 
ESDs and access to available ESDs see: http://www.nrcs.usda.gov/wps/portal/nrcs/main/
national/technical/ecoscience/desc/). ESDs assist managers to step-down generalized 
vegetation dynamics, including the concepts of resilience and resistance, to local scales. 
For example, variability in soil characteristics and the local environment (e.g., average 
annual precipitation as indicated by soil moisture regime) can strongly influence both 
plant community resilience to fire as well as the resistance of a plant community to 
invasive annual grasses after fire (table 1). Within a particular ESD, there is a similar 
level of resilience to disturbance and resistance to invasive annuals and this information 
can be used to determine the most appropriate management actions.

State and transition models: STMs are a central component of ecological site de-
scriptions that are widely used by managers to illustrate changes in plant communities 
and associated soil properties, causes of change, and effects of management interventions 
(Stringham et al. 2003; Briske et al. 2005; USDA NRCS 2007) including in sagebrush 
ecosystems (Forbis et al. 2006; Barbour et al. 2007; Boyd and Svejcar 2009; Holmes 
and Miller 2010; Chambers et al. in press). These models use state (a relatively stable 
set of plant communities that are resilient to disturbance) and transition (the drivers of 
change among alternative states) to describe the range in composition and function of 
plant communities within ESDs (Stringham and others 2003; see Appendix 1 for defini-
tions). The reference state is based on the natural range of conditions associated with 
natural disturbance regimes and often includes several plant communities (phases) that 
differ in dominant plant species relative to type and time since disturbance (Caudle et al. 
2013). Alternative states describe new sets of communities that result from factors such 
as inappropriate livestock use, invasion by annual grasses, or changes in fire regimes. 
Changes or transitions among states often are characterized by thresholds that may 
persist over time without active intervention, potentially causing irreversible changes 
in community composition, structure, and function. Restoration pathways are used to 
identify the environmental conditions and management actions required for return to 
a previous state. Detailed STMs that follow current interagency guidelines (Caudle et 
al. 2013), are aligned with the ecological types (table 1), and are generally applicable 
to MZs III (Southern Great Basin), IV (Snake River Plains), V (Northern Great Basin), 
and VI (Columbia Basin) are provided in Appendix 5.

A generalized STM to illustrate the use of STMs is shown in figure 32 for the warm 
and dry Wyoming big sagebrush ecological type. This ecological type occurs at relatively 
low elevations in the western part of the range and has low to moderate resilience to 
disturbance and management treatments and low resistance to invasion (table 1). This 
type is abundant in the western portion of the range, but as the STM suggests, it is highly 
susceptible to conversion to invasive annual grass and repeated fire and is difficult to 
restore. Intact sagebrush areas remaining in the reference state within this ecological type 
are a high priority for conservation. Invaded states or locations with intact sagebrush that 
lack adequate native perennial understory are a high priority for restoration where they 
bridge large, contiguous areas of sagebrush. However, practical methods to accomplish 
this are largely experimental and/or costly and further development, including adaptive 
science and management, is needed.
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Figure 32. A state and transition model that illustrates vegetation dynamics and restoration pathways for the warm and dry, 
Wyoming big sagebrush ecological type. This ecological type occurs at relatively low elevations in the western part of the range 
and has low to moderate resilience to disturbance and management treatments and low resistance to invasion.
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Monitoring and adaptive management: Monitoring programs designed to track 
ecosystem changes in response to both stressors and management actions can be used 
to increase understanding of ecosystem resilience and resistance, realign management 
approaches and treatments, and implement adaptive management (Reever-Morghan et 
al. 2006; Herrick et al. 2012). Information is increasing on likely changes in sagebrush 
ecosystems with additional stress and climate warming, but a large degree of uncertainty 
still exits. Currently, the NRCS National Resource Inventory is being used on private 
lands and is being implemented on public lands managed by BLM to monitor trends 
in vegetation attributes and land health at the landscape scale under the AIM (Assess-
ment Inventory and Monitoring) strategy. Strategic placement of monitoring sites and 
repeated measurements of ecosystem status and trends (e.g., land cover type, ground 
cover, vegetation cover and height of native and invasive species, phase of tree expan-
sion, soil and site stability, oddities) can be used to decrease uncertainty and increase 
effectiveness of management decisions. Ideally, monitoring sites span environmental/
productivity gradients and sagebrush ecological types that characterize sage-grouse 
habitat. Of particular importance are (1) ecotones between ecological types where 
changes in response to climate are expected to be largest (Loehle 2000; Stohlgren et al. 
2000), (2) ecological types with climatic conditions and soils that are exhibiting invasion 
and repeated fires, and (3) ecological types with climatic conditions and soils that are 
exhibiting tree expansion and increased fire risk. Monitoring the response of sagebrush 
ecosystems to management treatments, including both pre- and post-treatment data, is a 
first order priority because it provides information on treatment effectiveness that can 
be used to adjust methodologies.

Monitoring activities are most beneficial when consistent approaches are used among 
and within agencies to collect, analyze, and report monitoring data. Currently, effective-
ness monitoring databases that are used by multiple agencies do not exist. However, 
several databases have been developed for tracking fire-related and invasive-species 
management activities. The National Fire Plan Operations and Reporting System (NF-
PORS) is an interdepartmental and interagency database that accounts for hazardous 
fuel reduction, burned area rehabilitation and community assistance activities. To our 
knowledge, NFPORS is not capable of storing and retrieving the type of effectiveness 
monitoring information that is needed for adaptive management. The FEAT FIREMON 
Integrated (FFI; https://www.frames.gov/partner-sites/ffi/ffi-home/) is a monitoring 
software tool designed to assist managers with collection, storage and analysis of eco-
logical information. It was constructed through a complementary integration of the Fire 
Ecology Assessment Tool (FEAT) and FIREMON. This tool allows the user to select 
among multiple techniques for effectiveness monitoring. If effectiveness monitoring 
techniques were agreed on by the agencies, FFI does provide databases with standard 
structures that could be used in inter-agency effectiveness monitoring. Also, the National 
Invasive Species Information Management System (NISIMS) is designed to reduce 
redundant data entry regarding invasive species inventory, management and effective-
ness monitoring with the goal of providing information that can be used to determine 
effective treatments for invasive species. However, NISIMS is currently available only 
within the BLM.

Common databases can be used by agency partners to record and share monitoring 
data. The Land Treatment Digital Library (LTDL [USGS 2010]) provides a method of 
archiving and collecting common information for land treatments and might be 
used as a framework for data storage and retrieval. Provided databases are rela-
tional (maintain a common field for connecting them), creating single corporate 
databases is not necessary. However, barriers that hinder database access within 
and among agencies and governmental departments may need to be lowered 
while still maintaining adequate data security. The LTDL has demonstrated how 
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this can work by accessing a variety of databases to populate useful information 
relating to land treatments.

For effectiveness of treatments to be easily useable for adaptive management, 
the agencies involved will need to agree on monitoring methods and a common 
data storage and retrieval system. Once data can be retrieved, similar treatment 
projects can be evaluated to determine how well they achieve objectives for 
sage-grouse habitat, such as the criteria outlined in documents like the Habitat 
Assessment Framework (Stiver et al. 2006). Results of monitoring activities on 
treatment effectiveness are most useful when shared across jurisdictional bound-
aries, and several mechanisms are currently in place to improve information 
sharing (e.g., the Great Basin Fire Science Delivery Project; www.gbfiresci.org).
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Appendix 1.  Definitions of Terms Used in This Document_________________

At-Risk Community Phase — A community phase that can be designated within the 
reference state and also in alternative states. This community phase is the most 
vulnerable to transition to an alternative state (Caudle et al. 2013). 

Community Phase — A unique assemblage of plants and associated soil properties 
that can occur within a state (Caudle et al. 2013).

Ecological Site (ES) — An Ecological Site (ES) is a conceptual division of the landscape 
that is defined as a distinctive kind of land based on recurring soil, landform, geo-
logical, and climate characteristics that differs from other kinds of land in its ability 
to produce distinctive kinds and amounts of vegetation and in its ability to respond 
similarly to management actions and natural disturbances (Caudle et al. 2013).

Ecological Site Descriptions (ESD) — The documentation of the characteristics of an 
ecological site. The documentation includes the data used to define the distinctive 
properties and characteristics of the ecological site; the biotic and abiotic character-
istics that differentiate the site (i.e., climate, topography, soil characteristics, plant 
communities); and the ecological dynamics of the site that describes how changes 
in disturbance processes and management can affect the site. An ESD also provides 
interpretations about the land uses and ecosystem services that a particular ecologi-
cal site can support and management alternatives for achieving land management 
(Caudle et al. 2013).

Ecological Type — A category of land with a distinctive (i.e., mappable) combination 
of landscape elements. The elements making up an ecological type are climate, geol-
ogy, geomorphology, soils, and potential natural vegetation. Ecological types differ 
from each other in their ability to produce vegetation and respond to management 
and natural disturbances (Caudle et al. 2013).  

Historical Range of Variability — Range of variability in disturbances, stressors, and 
ecosystem attributes that allows for maintenance of ecosystem resilience and resistance 
and that can be used to provide management targets (modified from Jackson 2006).  

Resilience — Ability of a species and/or its habitat to recover from stresses and dis-
turbances. Resilient ecosystems regain their fundamental structure, processes, and 
functioning when altered by stresses like increased CO2 , nitrogen deposition, and 
drought and to disturbances like land development and fire (Allen et al. 2005; Hol-
ling 1973). 

Resistance — Capacity of an ecosystem to retain its fundamental structure, processes 
and functioning (or remain largely unchanged) despite stresses, disturbances, or 
invasive species (Folke et al. 2004).

Resistance to Invasion — Abiotic and biotic attributes and ecological processes of an 
ecosystem that limit the population growth of an invading species (D’Antonio and 
Thomsen 2004).

Restoration Pathways — Restoration pathways describe the environmental conditions 
and practices that are required for a state to recover that has undergone a transition 
(Caudle et al. 2013).

State — A state is a suite of community phases and their inherent soil properties that 
interact with the abiotic and biotic environment to produce persistent functional and 
structural attributes associated with a characteristic range of variability (adapted 
from Briske et al. 2008). 
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State-and-Transition Model — A method to organize and communicate complex 
information about the relationships between vegetation, soil, animals, hydrology, 
disturbances (fire, lack of fire, grazing and browsing, drought, unusually wet peri-
ods, insects and disease), and management actions on an ecological site (Caudle et 
al. 2013). 

Thresholds — Conditions sufficient to modify ecosystem structure and function beyond 
the limits of ecological resilience, resulting in the formation of alternative states 
(Briske et al. 2008). 

Transition — Transitions describe the biotic or abiotic variables or events, acting 
independently or in combination, that contributes directly to loss of state resilience 
and result in shifts between states. Transitions are often triggered by disturbances, 
including natural events (climatic events or fire) and/or management actions (graz-
ing, burning, fire suppression). They can occur quickly as in the case of catastrophic 
events like fire or flood, or over a long period of time as in the case of a gradual 
shift in climate patterns or repeated stresses like frequent fires (Caudle et al. 2013).
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Appendix 2. An Explanation of the Use of Landscape Measures to Describe 
Sagebrush Habitat__________________________________________________

Understanding landscape concepts of plant cover relative to typical management unit 
concepts of plant cover is important for prioritizing lands for management of sage-grouse. 
Ground cover measurements of sagebrush made at a management unit (for example, 
line-intercept measurements) should not be confused for landscape cover and may not 
relate well to landscape cover since the areas of examination differ vastly (square meters 
for management units and square kilometers for landscapes).

A landscape is defined rather arbitrarily as a large area in total spatial extent, somewhere 
in size between sites (acres or square miles) and regions (100,000s of square miles).  The 
basic unit of a landscape is a patch, which is defined as a bounded area characterized 
by a similar set of conditions.  A habitat patch, for example, may be the polygonal area 
on a map representing a single land cover type.  Landscapes are composed of a mosaic 
of patches. The arrangement of these patches (the landscape configuration or pattern) 
has a large influence on the way a landscape functions and for landscape species, such 
as sage-grouse, sagebrush habitat patches are extremely important for predicting if this 
bird will be present within the area (Connelly et al. 2011).

Remotely sensed data of land cover is typically used to represent landscapes. These 
data may combine several sources of data and may include ancillary data, such as el-
evation, to improve the interpretation of data. These data are organized into pixels that 
contain a size or grain of land area. For example, LandSat Thematic Mapper spectral 
data used in determining vegetation cover generally have pixels that represent ground 
areas of 900 m2 (30- x 30-m). Each pixel’s spectral signature can be interpreted to de-
termine what type of vegetation dominates that pixel. Groups of adjacent pixels with 
the same dominant vegetation are clustered together into polygons that form patches. 

Landscape cover of sagebrush is determined initially by using this vegetation cover 
map, but a ‘rolling window’ of a predetermined size (e.g., 5 km2 or 5,556 pixels that are 
30- by 30-m in size) is moved across the region one pixel at a time. The central pixel of 
the ‘window’ is reassigned a value for the proportion of pixels where sagebrush is the 
dominant vegetation. The process is repeated until pixels within the region are com-
pletely reassigned to represent the landscape cover of sagebrush within for the region 
drawn from a 5 km2 window. 
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Appendix 3. An Explanation of Soil Temperature and Moisture Regimes Used 
to Describe Sagebrush Ecosystems___________________________________

Soil climate regimes (temperature and moisture) are used in Soil Taxonomy to classify 
soils; they are important to consider in land management decisions, in part, because of 
the significant influence on the amounts and kinds of vegetation that soils support. Soil 
temperature and moisture regimes are assigned to soil map unit components as part of 
the National Cooperative Soil Survey program. Soil survey spatial and tabular data for 
the Sage-grouse Management Zones (Stiver et al. 2006) were obtained for each State 
within the zones at the Geospatial Data Gateway (http://datagateway.nrcs.usda.gov/). 
Gridded Soil Survey Geographic (gSSURGO) file geodatabases were used to display 
a 10-meter raster dataset. Multiple soil components made up a soil map unit, and soil 
moisture and temperature regimes were linked to individual soil map components. Soil 
components with the same soil moisture and temperature class regime were aggregated, 
and the dominant soil moisture and temperature regime within each soil map unit was 
used to characterize the temperature and moisture regime. Only temperature and moisture 
regimes applicable to sagebrush ecosystems were displayed.

Abbreviated definitions of each soil temperature and moisture regime class are listed 
below. Complete descriptions can be found in Keys to Soil Taxonsomy, 11th edition, 
available at ftp://ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/2010_Keys_to_
Soil_Taxonomy.pdf.

Soil temperature regimes

Cryic (Cold) Soils that have a mean annual soil temperature of <8 °C, and do not have permafrost, at a 
depth of 50 cm below the surface or at a restrictive feature, whichever is shallower.

Frigid (Cool)
Soils that have a mean annual soil temperature of <8 °C and the difference between 
mean summer and mean winter soil temperatures is >6 °C at a depth of 50 cm below the 
surface or at a restrictive feature, whichever is shallower.

Mesic (Warm)
Soils that have a mean annual soil temperature of 8-15 °C and the difference between 
mean summer and mean winter soil temperatures is >6 °C at a depth of 50 cm below the 
surface or at a restrictive feature, whichever is shallower.

Soil moisture regimes

Ustic (summer precipitation)
Generally there is some plant-available moisture during the growing season, although 
significant periods of drought may occur. Summer precipitation allows presence of warm 
season plant species.

Xeric (Moist; generally 
mapped at >12 inches mean 
annual precipitation)

Characteristic of arid regions. The soil is dry for at least half the growing season and 
moist for less than 90 consecutive days.

Aridic (Dry; generally 
mapped at <12 inches mean 
annual precipitation)

Characteristic of arid regions. The soil is dry for at least half the growing season and 
moist for less than 90 consecutive days. 

Note: Soil moisture regimes are further divided into moisture subclasses, which are often used to indicate  soils  that are 
transitional to another moisture regime. For example, a soil with an Aridic moisture regime and a Xeric moisture subclass 
may be described as “Aridic bordering on Xeric.” Understanding these gradients becomes increasingly important when mak-
ing interpretations and decisions at the site scale where aspect, slope, and soils affect the actual moisture regime on that site.  
More information on taxonomic moisture subclasses is available at http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/
ref/?cid=nrcs142p2_053576.
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Appendix 4.  Data Sources for the Maps in This Report___________________

Dataset Citation Link

Geomac fire perimeters Walters, S.P.; Schneider, N.J.; Guthrie, 
J.D. 2011. Geospatial Multi-Agency 
Coordination (GeoMAC) wildland 
fire perimeters, 2008. Data Series 612. 
Washington, DC: U.S. Department of the 
Interior, U.S. Geological Survey.6 p.

http://pubs.er.usgs.gov/publication/ds612

WFDSS fire perimeters Butler, B. B.; Bailey, A. 2013. Disturbance history 
(Historical wildland fires). Updated 8/9/2013. 
Wildland Fire Decision Support System. Online:  
https://wfdss.usgs.gov/wfdss/WFDSS_Home.
shtml [Accessed 5 March 2014]. 

https://wfdss.usgs.gov/wfdss/WFDSS_
Home.shtml

or 

https://wfdss.usgs.gov/wfdss/
WFDSSData_Downloads.shtml

Piñon and juniper land 
cover

U.S. Geological Survery (USGS) National Gap 
Analysis Program. 2004. Provisional digital 
land cover map for the southwestern United 
States. Version 1.0. Logan, UT: Utah State 
University, College of Natural Resources, RS/
GIS Laboratory.

http://earth.gis.usu.edu/swgap/landcover.
html

Piñon and juniper land 
cover

U.S. Geological Survey (USGS). 2013: LANDFIRE 
1.2.0 Existing Vegetation Type layer. Updated 
3/13/2013. Washington, DC: U.S. Department of 
the Interior, Geological Survey. Online: http://
landfire.cr.usgs.gov/viewer/. [Accessed 13 March 
2014].

http://www.landfire.gov/National
ProductDescriptions21.php

Nevada invasive annual 
grass index

Peterson, E. B. 2006. A map of invasive annual 
grasses in Nevada derived from multitemporal 
Landsat 5 TM imagery. Carson City, NV: State of 
Nevada, Department of Conservation and Natural 
Resources, Nevada Natural Heritage Program.

http://heritage.nv.gov/node/167

Owhyee upland annual 
grass index

Peterson, E. B. 2007. A map of annual grasses in the 
Owyhee Uplands, Spring 2006, derived from 
multitemporal Landsat 5 TM imagery. Carson 
City, NV: State of Nevada, Department of 
Conservation and Natural Resources, Nevada 
Natural Heritage Program.

http://heritage.nv.gov/sites/default/
files/library/anngrowy_text_print.pdf

Soil data (SSURGO) Soil Survey Staff. 2014a. Soil Survey Geographic 
(SSURGO) Database. United States Department 
of Agriculture, Natural Resources Conservation 
Service. Online: http://sdmdataaccess.nrcs.usda.
gov/. [Accessed 3 March 2014a]. 

http://www.nrcs.usda.gov/wps/
portal/nrcs/detail/soils/survey/?
cid=nrcs142p2_053627

Soil data (STATSGO) Soil Survey Staff. 2014b. U.S. General Soil 
Map (STATSGO2) Database. United States 
Department of Agriculture, Natural Resources 
Conservation Service. Online: http://
sdmdataaccess.nrcs.usda.gov/. [Accessed 3 
March 2014b]. 
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Soil temperature and 
moisture regime data

Campbell, S. B. 2014.  Soil temperature and moisture 
regime data for the range of greater sage-grouse. Data 
product. Portland, OR: USDA Natural Resources 
Conservation Service. Online: https://www.
sciencebase.gov/catalog/folder/537f8be5e4b021317a
872f1b?community=LC+MAP+-+Landscape+Conser
vation+Management+and+Analysis+Portal [Accessed 
17 June 2014]. 

https://www.sciencebase.gov/catalog/folde
r/537f8be5e4b021317a872f1b?community
=LC+MAP+-+Landscape+Conservation+
Management+and+Analysis+Portal

Sage-grouse 
management zones

Stiver, S. J.; Apa, A. D.; Bohne, J. R.; Bunnell, S. D.; 
Deibert, P. A.; Gardner, S. C.; Hilliard, M. A.; 
McCarthy, C. W.; Schroeder, M. A. 2006. Greater 
Sage-grouse Comprehensive Conservation 
Strategy. Unpublished report on file at: Western 
Association of Fish and Wildlife Agencies, 
Cheyenne, WY.

Breeding bird densities Doherty, K. E.; Tack, J. D.; Evans, J. S.; Naugle, 
D. E. 2010. Mapping breeding densities of 
greater sage-grouse: A tool for range-wide 
conservation planning. BLM completion report: 
Agreement # L10PG00911. 

http://scholar.google.com/scholar?q=d
oherty+2010+breeding+bird&hl=en&
as_sdt=0&as_vis=1&oi=scholart&sa=X&
ei=JqQbU7HUAqfD2QW8xYFY&ved=0
CCUQgQMwAA

Sagebrush land cover U.S. Geological Survey (USGS). 2013: LANDFIRE 
1.2.0 Existing Vegetation Type layer. Updated 
3/13/2013. Washington, DC: U.S. Department of 
the Interior, Geological Survey. Online: http://
landfire.cr.usgs.gov/viewer/. [Accessed 13 March 
2014].

http://www.landfire.gov/National
ProductDescriptions21.php
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Appendix 5.  State-and-transition models (STMs) for five generalized 
ecological types for big sagebrush (from Chambers et al. in press; Miller 
et al. 2014 a, b)_____________________________________________________

These STMs represent groupings of ecological sites that are characterized by 
Wyoming or mountain big sagebrush, span a range of soil moisture/temperature 
regimes (warm/dry to cold/moist), and characterize a large portion of Manage-
ment Zones III (Southern Great Basin), IV (Snake River Plains), V (Northern 
Great Basin), and VI (Columbia Basin). Large boxes illustrate states that are 
comprised of community phases (smaller boxes). Transitions among states are 
shown with arrows starting with T; restoration pathways are shown with arrows 
starting with R. The “at risk” community phase is most vulnerable to transition 
to an alternative state. Precipitation Zone is designated as PZ.

Figure A.5A. STM for a cryic/xeric mountain big sagebrush/mountain brush ecological type characterized by moderately high 
resilience and high resistance.
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Figure A.5B. STM for a cool frigid/xeric mountain big sagebrush ecological type that has piñon pine and/or juniper potential and 
is characterized by moderately high resilience and resistance.
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Figure A.5C. STM for a cool mesic to cool frigid/xeric mountain big sagebrush ecological type that is characterized by moderate 
resilience and resistance.
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Figure A.5D. STM for a cool mesic to warm frigid/xeric mountain big sagebrush ecological type type that has piñon pine and/
or juniper potential and is characterized by moderate resilience and moderately low resistance.
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Figure A.5E. STM for a mesic/aridic Wyoming big sagebrush ecological type with low to moderate resilience and low resistance.
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