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Abstract.   We developed rangewide population and habitat models for Greater Sage-Grouse (Centro­
cercus urophasianus) that account for regional variation in habitat selection and relative densities of birds 
for use in conservation planning and risk assessments. We developed a probabilistic model of occupied 
breeding habitat by statistically linking habitat characteristics within 4 miles of an occupied lek using a 
nonlinear machine learning technique (Random Forests). Habitat characteristics used were quantified in 
GIS and represent standard abiotic and biotic variables related to sage-grouse biology. Statistical mod-
el fit was high (mean correctly classified = 82.0%, range = 75.4–88.0%) as were cross-validation statistics 
(mean = 80.9%, range = 75.1–85.8%). We also developed a spatially explicit model to quantify the relative 
density of breeding birds across each Greater Sage-Grouse management zone. The models demonstrate 
distinct clustering of relative abundance of sage-grouse populations across all management zones. On av-
erage, approximately half of the breeding population is predicted to be within 10% of the occupied range. 
We also found that 80% of sage-grouse populations were contained in 25–34% of the occupied range with-
in each management zone. Our rangewide population and habitat models account for regional variation 
in habitat selection and the relative densities of birds, and thus, they can serve as a consistent and common 
currency to assess how sage-grouse habitat and populations overlap with conservation actions or threats 
over the entire sage-grouse range. We also quantified differences in functional habitat responses and dis-
turbance thresholds across the Western Association of Fish and Wildlife Agencies (WAFWA) management 
zones using statistical relationships identified during habitat modeling. Even for a species as specialized 
as Greater Sage-Grouse, our results show that ecological context matters in both the strength of habitat 
selection (i.e., functional response curves) and response to disturbance.

Key words:   breeding habitat; conservation planning; ecological variation; function habitat response; Greater Sage-
Grouse; landscape context; population index; resource selection function; spatial modeling; thresholds.

Received 22 December 2015; revised 19 May 2016; accepted 1 June 2016. Corresponding Editor: R. R. Parmenter. 
Copyright: © 2016 Doherty et al. This is an open access article under the terms of the Creative Commons Attribution 
License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
† E-mail:  kevin_doherty@fws.gov

Introduction

In an increasingly anthropogenic world where 
funding for conservation activities is limited, 
effective landscape-scale conservation plan-
ning tools have been progressively embraced by 
resource management agencies to both maximize 

conservation investments and reduce impacts 
of anthropogenic disturbances. This has corre-
sponded with rapid expansion of landscape-scale, 
spatially explicit models of species habitat, such 
as resource selection functions (RSF) (Boyce and 
McDonald 1999, Johnson et al. 2006, 2013), which 
simultaneously give insight into the ecology of 
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species and can be used to produce maps to help 
guide where conservation actions should be most 
effective. Often, RSF models do not encompass 
the entire range of a focal species, and there-
fore, biological relationships are extrapolated to 
novel areas, not included in the development of 
the RSF models, when decisions must be made. 
Extrapolating known relationships often rep-
resents the best available information to decision 
makers, but should be done with caution because 
the accuracy of extrapolated models relies on simi-
lar habitat availability in the novel area (Mladenoff 
et al. 1999, Aarts et al. 2008).

A species response to particular habitat com-
ponents can change as a function of the preva-
lence of the resource, which is referred to as the 
functional response of a species (Mysterud and 
Ims 1998). Understanding functional responses 
related to habitat selection through RSF mod-
eling can elucidate threshold values for habitat 
quantity and quality, tolerance to perturbations, 
and cumulative effects (Rhodes et  al. 2008). 
Understanding functional responses is import-
ant as conservation plans generally require 
targets for the amount of habitat required for 
specific species in order for managers to make 
cost-effective decisions and balance competing 
interests (Carwardine et al. 2008). Unfortunately, 
setting conservation targets based upon thresh-
olds defined for other regions is precarious 
(Rhodes et al. 2008) because thresholds can vary 
tremendously across species and landscapes 
(van der Hoek et al. 2015). Landscape-scale mod-
eling across broad extents is important in under-
standing how functional responses may vary for 
wide-ranging species, as landscapes are seldom 
homogeneous across large extents.

Data on the abundance of individuals are 
rare for most taxa, yet if available, they can pro-
vide baseline data for monitoring populations 
and conservation actions (Sagarin et  al. 2006). 
Abundance is often clustered across the range of 
a species, typically being high in relatively few 
sites and low in the majority (Murphy et al. 2006). 
Knowledge and mapping of population centers 
or “hotspots” can be critically important for con-
servation planning as many species with broad 
distributions occur in densities of several orders 
of magnitude higher in hotspots compared with 
occupied habitats outside of hotspot boundar-
ies (Brown et al. 1995). Locations of population 

centers of many species can be stable over several 
decades even while population sizes fluctuate 
(Brown et al. 1995). Consequently, habitat protec-
tion can affect drastically different proportions 
of target populations depending on overlap with 
population centers.

Ideally, conservation planning makes the best 
use of information related to population abun-
dance and habitat requirements while account-
ing for regional gradients and differences in 
functional responses. When broad-scale popu-
lation survey data exist, probabilistic surfaces 
of density indices and habitat selection indices 
can be integrated to create analytical tools across 
broad spatial scales (Coates et al. 2015). This type 
of integrative methodology can create composite, 
spatially explicit indices that reflect demographic 
and habitat information and make predictions 
to guide landscape-level conservation actions. 
Unfortunately, such data are rare in conservation 
planning because the broad-scale population 
surveys are lacking for many species and habi-
tat modeling, by necessity, is often conducted at 
scales smaller than a species range.

Greater Sage-Grouse (Centrocercus urophasianus; 
hereafter sage-grouse) is a wide-ranging species 
of conservation concern that occurs throughout 
the sagebrush ecosystem in the Intermountain 
West of the United States (Schroeder et al. 2004: 
see Figure 1). Sage-grouse occupy approximately 
one-half of their historical distribution, and popu-
lations have declined concomitantly with the loss 
of sagebrush since pre-European settlement of 
the West (Schroeder et al. 2004). Currently, sage-
grouse are considered “not-warranted” for list-
ing under the United States Endangered Species 
Act of 1973 (ESA; U.S. Fish and Wildlife Service 
[USFWS] 2015), with a 5-year review to the deci-
sion scheduled for September 2020. Because of 
the wide-reaching implications of an ESA listing 
on western lands within North America, moni-
toring sage-grouse populations is imperative 
to help inform land and wildlife management 
agencies responsible for regulatory actions and 
policies. Lek sites (traditional breeding grounds) 
provide opportunity to count sage-grouse annu-
ally and monitor population response. Leks are 
typically located in nesting habitat where males 
are most likely to encounter females for breed-
ing opportunities (Gibson and Langen 1996), and 
several studies support this hypothesis for both 
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Greater Prairie chickens (Tympanuchus cupido) 
and sage-grouse (Schroeder and White 1993, 
Gibson 1996b, Holloran and Anderson 2005, 
Doherty et  al. 2010b, 2011, Coates et  al. 2013). 
Although sage-grouse leks have been counted 
each year since the 1950s, wildlife agencies have 
drastically increased their efforts in surveying 
known leks and searching for new lek sites since 
the mid-1990s, with almost exponential increases 
in survey effort during the last decade (WAFWA 
2015). Broad-scale sage-grouse lek survey data 
managed by each state with sage-grouse pro-
vide a unique opportunity to identify sources 
of temporal and spatial variation in functional 
responses across the entire range of a species 
that inhabits most of the western United States. 
Furthermore, findings from such analysis could 
be used to target thresholds for conservation 
planning activities for a species of increasingly 
high conservation concern.

Knowledge of high-abundance population cen-
ters for priority species represents a starting point 
to frame regional conservation initiatives and can 
direct management actions to landscapes where 
they will have the largest benefit to regional pop-
ulations (Sanderson et al. 2002, Groves 2003). We 
developed a model to quantify the relative density 
of breeding birds within each sage-grouse man-
agement zone. This was motivated by past work 
across the range that showed sage-grouse popu-
lations are highly clustered (Connelly et al. 2004, 
Stiver et al. 2006, Doherty et al. 2011). Fortunately, 
sage-grouse are one of the few species in which 
extensive data sets exist on distribution and rela-
tive abundance across their entire breeding distri-
bution, making an analysis of this scale possible 
(Connelly et  al. 2004, Schroeder et  al. 2004). We 
had two primary objectives within this study: 
(1) To develop rangewide habitat and population 
models that identify regional variation in habitat 
selection and relative densities of sage-grouse for 
use in conservation planning and risk assessments 
and (2) to assess the importance of variability in 
habitat selection and thresholds of disturbance 
and to identify differences in functional responses 
across the range of sage-grouse.

Study Area

Our study area includes the entire range of 
North American sage-grouse populations with 

the exception of six active leks located in Canada 
(Fig. 1). Canadian leks were not included in our 
modeling because of significant differences in 
available spatial data between the United States 
and Canada. Loss and degradation of native veg-
etation have affected much of the sagebrush 
(Artemisia spp.) ecosystem in western North 
America, and this ecosystem has become increas-
ingly fragmented because of conifer encroach-
ment, exotic annual grass invasion, and 
anthropogenic development (Knick et  al. 2003). 
The Western Association of Fish and Wildlife 
Agencies (WAFWA) Conservation Strategy for 
Greater Sage-Grouse (Stiver et  al. 2006) delin-
eated seven sage-grouse management zones to 
guide conservation and management (Table  1). 
The boundaries of these management zones were 
delineated based on differences in ecological 
and biological attributes (i.e., floristic provinces) 
rather than on arbitrary political boundaries 
(Stiver et al. 2006) (Fig. 1). Maps representing the 
major ecological gradients and subsequent dom-
inant land cover types are shown in Appendix 
S1. We stratified our analyses by sage-grouse 
management zones because spatial partitioning 
of data improves model fit where regional niche 
variation occurs (Murphy and Lovett-Doust 
2007) because of fundamental differences in the 
ecological gradients and different functional 
responses at regional scales.

Methods

Breeding habitat model
We developed a binomial probabilistic model 

of occupied breeding habitat by quantifying hab-
itat characteristics, within 6.4  km (4  miles) of 
both occupied sage-grouse leks and pseudoab-
sence points using a classification instance of the 
nonparametric model Random Forests (Cutler 
et  al. 2007, Olden et  al. 2008, Evans et  al. 2011, 
Baruch-Mordo et  al. 2013). Model predictions 
produce an estimated probability of sage-grouse 
lek occurrence for each 120  ×  120  m grid cell 
within each sage-grouse management zone. 
Components of sage-grouse habitat were com-
piled into a GIS database from various sources, 
but generally represent standard abiotic and 
biotic variables used in past work to represent 
sage-grouse habitat (Table 2). Sage-grouse habi-
tat use has been investigated extensively across 
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the range. For brevity, we provide the justifica-
tion for variables, predicted relationships, and 
relevant citations in table format, rather than 
extensive in-text descriptions (Table 2).

Lek survey data
We compared active lek locations with pseudo-

absence locations to generate models of predicted 
breeding sage-grouse habitat across the range. 
The hotspot hypothesis of lek evolution suggests 
that leks are typically located in close proximity 
to nesting habitat where males will most likely 
encounter prenesting females who are attracted 
by important habitat features (Schroeder and 
White 1993, Gibson 1996a), such as forbs required 
for prebreeding (Barnett and Crawford 1994) and 
sagebrush cover for nesting (Connelly et al. 2000). 
Additionally, 79–95% of sage-grouse nesting 
locations are located within 6.4  km of a lek 
(Holloran and Anderson 2005, Doherty et al. 2011, 
Coates et  al. 2013). Further, recent studies have 

shown that telemetry-based models of nesting 
sage-grouse predicted almost two times more 
nesting habitat around leks than at random loca-
tions (Doherty et al. 2010b, Fedy et al. 2014). We 
therefore believe that sage-grouse lek locations 
are a good predictor of important breeding areas. 
We used lek data assembled and proofed by 
WAFWA to develop both our breeding habitat 
model and breeding population index model. For 
the purposes of both models, a lek was defined as 
active if greater than two males were counted 
during a single counting visit during 2010–2014 
and the last count was not a zero.

Pseudoabsence data
Recent lek survey efforts have been intensive 

enough that although not all leks have been identi-
fied, we are confident that the spatial processes 
governing lek locations and sage-grouse abun-
dance were well represented in the data. To gener-
ate pseudoabsence (i.e., background) locations, we 

Fig. 1. Location of Greater Sage-Grouse management zones used to spatially subset analyses and the location 
of active Greater Sage-Grouse leks counted during 2010–2014. Percentages are derived from the sum of the mean 
peak count of displaying sage-grouse at individual leks during 2010–2014 within each management zone divided 
by the rangewide total, to give context to the amount of known populations within each management zone.
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modeled the spatial process of known leks, using 
an isotropic kernel estimate (Diggle 1985), and 
used the inverse of the density estimate to weight 
samples. A gradient function allowed for a tension 
parameter to control the proximity of pseudoab-
sence locations in relation to known lek locations. 
We utilized the pseudoabsence model available in 
the spatialEco library (Evans 2015) and defined the 
sigma (distance smoothing for the kernel; band-
width) as 18 km and the gradient as 1, thus provid-
ing no weighting to the pseudoabsence diffusion 
process. This ensured that we were sampling the 
range of habitat variation within each sage-grouse 
management zone. To avoid class imbalance 
(Evans and Cushman 2009) (i.e., zero inflation) 
issues, we generated an equal ratio of pseudoab-
sence to lek locations and compared resulting sam-
ple variation against population data (rasters) to 

evaluate whether we had an adequate sample to 
support model fit, spatial estimation, and infer-
ence. We chose an 18-km bandwidth because 
recent research has shown that this scale represents 
the scale at which breeding populations move 
across the landscape to fulfill other seasonal habi-
tat needs (Fedy et al. 2012) and because we specifi-
cally designed our study to capture large first-order 
habitat selection. To accurately define first-order 
sage-grouse habitat availability extents, we 
matched the spatial scale of availability to the 
desired scale of inference because matching such 
scales is critical to obtaining reliable estimates on 
selection behavior (Northrup et al. 2013).

Statistical model
Nonparametric methods are becoming much 

more common in ecological modeling, supporting 

Table 1. Ecological descriptions of Western Association of Fish and Wildlife Agencies Greater Sage-Grouse 
Management Zones.

Zone Description

Northern 
Great Plains 
(MZ I)

The Northern Great Plains includes the northeastern portions of the sage-grouse range. This management 
zone experiences the most precipitation, and thus, it contains larger portions of the landscape 
dominated by grasslands, smaller patches of sagebrush, and more silver sagebrush (Artemisia cana var. 
cana) than other management zones. MZ I also has the highest amount of land in private ownership, 
and compared with other management zones, it has the highest amount of cropland

Wyoming 
Basin  
(MZ II)

The Wyoming Basin is characterized by large expanses of Wyoming big sagebrush (Artemisia tridentata 
var. wyomingensis) with little fragmentation; however, it experiences the greatest amount of oil and gas 
development. Most of the precipitation in this management zone comes in the form of winter snowfall. 
MZ II contains the highest densities of sage-grouse across their range

Southern 
Great Basin 
(MZ III)

The Southern Great Basin includes the southern- and westernmost populations of sage-grouse. MZ III is 
the most arid of all the management zones and includes a mix of Wyoming big sagebrush, mountain big 
sagebrush (A. tridentata var. vaseyana), low sagebrush (A. arbuscula), and black sagebrush (A. nova). 
Topography is rugged with sagebrush on many of the valley floors transitioning to arid coniferous 
forests at higher elevations on the mountain slopes

Snake River 
Plain  
(MZ IV)

The Snake River Plain encompasses the north-central populations of sage-grouse. Like MZ III and MZ V, 
it is characterized by salt deserts in the lower elevations and conifer forests at higher elevations. 
Wyoming big sagebrush and basin big sagebrush (A. tridentata var. tridentata) are the dominant species, 
with mountain big sagebrush at higher elevations. MZ IV contains the second highest density of 
sage-grouse across the species range. The Snake River Plains management zone also experiences dense 
cropland areas; however, they are clustered at lower elevations

Northern 
Great Basin 
(MZ V)

The Northern Great Basin is similar to the Southern Great Basin, but it is less arid with precipitation 
occurring primarily in the winter and spring. Similar to MZ III and MZ IV, lower elevations are 
dominated by salt deserts and higher elevations are dominated by conifer forest

Columbia 
Basin  
(MZ VI)

The Colombia Basin is isolated from the rest of the sage-grouse range and is contained entirely within 
Washington state. Wyoming big sagebrush and basin big sagebrush are predominate species. MZ VI 
contains the lowest elevation sagebrush across the range and experiences high amounts of cropland in 
comparison with all other management zones with the exception of the Northern Great Plains

Colorado 
Plateau 
(MZ VII)

The Colorado Plateau is the southeastern-most management zone and contains a small fraction of the 
overall sage-grouse populations. It is similar to the Southern Great Basin MZ, but it receives more 
precipitation. Soil types within the Colorado Plateau greatly restrict the sagebrush distribution, and it 
contains a very small portion of the overall occupied habitat

Notes: Descriptions of management zones were originally summarized (Miller and Eddleman 2001) and adapted by WAFWA 
for analyses for both the 2004 Conservation Assessment of Greater Sage-Grouse and Sagebrush Habitats (Connelly et al. 2004) 
and 2006 Greater Sage-Grouse Comprehensive Conservation Strategy (Stiver et al. 2006). We created maps of the ecological 
gradients and major land cover types between Greater Sage-Grouse management zones for further reference in Appendix S1. 
Maps focused on the major ecological gradients and subsequent land cover (Figs. 3–9).
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Table  2. Description of explanatory variables used to predict the occupied Greater Sage-Grouse breeding 
habitat across 11 western U.S. States during 2010–2014.

Name
Source  
(years)

Native  
pixel (m)

Resampled 
pixel (m) Description† Justification (references)

General habitat  
predictor group

Low sagebrush LANDFIRE 
EVT 1.2 
(2010)‡

30 × 30 120 × 120 % of grid cells 
classified as low 
sagebrush

Established positive relationship 
between sage-grouse abundance 
and sagebrush (Patterson 1952)

Tall sagebrush LANDFIRE 
EVT 1.2 
(2010)‡

30 × 30 120 × 120 % of grid cells 
classified as tall 
sagebrush

Established positive relationship 
between sage-grouse abundance 
and sagebrush (Patterson 1952)

All sagebrush LANDFIRE 
EVT 1.2 
(2010)‡

30 × 30 120 × 120 % of grid cells 
classified as all 
sagebrush

Established positive relationship 
between sage-grouse abundance 
and sagebrush (Patterson 1952)

Canopy cover LANDFIRE 
Fuels 1.2 
(2010)

30 × 30 120 × 120 % canopy cover in 
10% increments 
from 15% to 95%

Established negative relationship 
between sage-grouse and conifers 
(Doherty et al. 2008, Baruch-
Mordo et al. 2013, Fedy et al. 2014)

Grassland/
herbaceous

LANDFIRE 
Fuels 1.2 
(2010)

30 × 30 120 × 120 % of grid cells 
classified as 
grassland

Established negative relationship 
between sage-grouse abundance 
and grasslands (Patterson 1952)

Perennial  
water

National 
Hydrological 
Dataset NHD 
(2012)

Vector of 
Lines and 
Polygons

120 × 120 NHD perennial 
flow lines within 
a 6440-m 
moving 
window, 
multiplied by 
the average line 
length per cell 
(133.2 m)

Established negative relationship of 
riparian areas with nest site 
selection (Crawford et al. 2004) 
and established positive 
relationship between sage-grouse 
populations and riparian habitats 
(Blomberg et al. 2014)

Intermittent 
water

NHD (2012) Vector of 
Lines and 
Polygons

120 × 120 See perennial 
water

See perennial water

Springs and 
seeps

NHD (2012) Vector of 
Lines and 
Polygons

120 × 120 See perennial 
water

See perennial water

Topographic 
wetness index

NHD (2012) 
and NED 
elevation 
Data (2013)

30 × 30 120 × 120 Index of wetness See perennial water

Climatic data  
predictor group§
Gross primary 

production
MODIS NASA 

EODP 
(2009–2013)

1 × 1 km 120 × 120 Index of early 
brood-rearing 
habitat (mean of 
GPP from 5–15 
through 6–15)

Forbs are important predictors of 
early brood survival and habitat 
selection (Crawford et al. 2004)

Degree 
days > 5°C

USFS  
(1961–1990) 
(Rehfeldt 
et al. 2006)

1 × 1 km 120 × 120 The number of 
days that reach 
a temperature 
≥5°C

Large-scale ecological driver of land 
types. Hypothesized regional-scale 
relationship between sagebrush 
landscapes with higher produc-
tion. Documented carryover effects 
(Blomberg et al. 2014)

Mean annual 
precipitation

USFS  
(1961–1990) 
(Rehfeldt 
et al. 2006)

1 × 1 km 120 × 120 Mean annual 
precipitation 
(mm)

Large-scale ecological driver of land 
types. Hypothesized regional-scale 
relationship between sagebrush 
landscapes with higher produc-
tion. Documented carryover effects 
(Blomberg et al. 2014)

Annual drought 
index

USFS  
(1961–1990) 
(Rehfeldt 
et al. 2006)

1 × 1 km 120 × 120 Ratio = dd5/map Large-scale ecological driver of land 
types. Hypothesized regional-scale 
relationship between sagebrush 
landscapes with higher produc-
tion. Documented carryover effects 
(Blomberg et al. 2014)
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inference of nonlinear and spatial dynamics 
(Cutler et al. 2007, Olden et al. 2008, Evans et al. 
2011, Baruch-Mordo et al. 2013). Random Forests 
uses multiple realizations of the data, with no 
distributional assumptions, that effectively con-
verge on a stable estimate in very high-dimensional 
statistical spaces (Murphy et al. 2010, Evans et al. 
2011). Model interpretation and inference were 
supported following the methods presented 
in Cutler et  al. (2007), Murphy et al. (2010), and 

Evans et  al. (2011). The expected complexity in 
interaction effects, potential latent variables, high 
spatial variability representing both global and 
local effects, and nonlinear relationships all sup-
port a nonlinear model such as Random Forests as 
an appropriate choice.

We modeled selection of breeding season 
habitat within the species range (Johnson 1980, 
Meyer and Thuiller 2006) using Random Forests, 
which is a bootstrapped classification and 

Name
Source  
(years)

Native  
pixel (m)

Resampled 
pixel (m) Description† Justification (references)

Landform variables  
predictor group
Roughness National 

Elevation 
Data NED 
(2013)

30 × 30 120 × 120 SD in elevation 
within a 6440-m 
buffer of a grid 
cell

Established negative relationship 
between sage-grouse and rough 
terrain (Doherty et al. 2008, Fedy 
et al. 2014)

Elevation NED (2013) 30 × 30 120 × 120 Average elevation 
within a 6440-m 
buffer of the 
grid cell

Hypothesized relationship between 
grouse populations and areas with 
higher productivity because of 
elevation

Steep NED (2013) 30 × 30 120 × 120 % of landscape 
classified as 
steep using 
Theobald LCAP 
tool

Established negative relationship 
between sage-grouse and rough 
terrain (Doherty et al. 2008, Fedy 
et al. 2014)

Disturbance variables  
predictor group
Human 

disturbance 
index

NLCD 
Disturbed 
Classes¶ 
(2011)

30 × 30 120 × 120 Land cover types 
associated with 
human presence

Established negative relationship 
between sage-grouse and human 
activity (Tack 2009, Naugle et al. 
2011a)

Oil and gas  
wells

IHS oil and gas 
database 
(1920’s–2014)

Point 120 × 120 Density of oil and 
gas well 
locations†

Established negative relationship 
between sage-grouse and oil and 
gas development (Naugle et al. 
2011b, Gregory and Beck 2014)

Burned 
landscapes

WFDSS-
GeoMac Fire 
Perimeters 
(2000–2008, 
2009–2013, 
1984–2013)

Vector of 
Polygons

120 × 120 Proportion of grid 
cells that are 
burned within a 
6440-m area

Established negative relationship 
between fire and sagebrush 
habitat (Nelle et al. 2000, Hess and 
Beck 2012)

Agriculture 
lands

NASS 
(2008–2014)

30 × 30 120 × 120 Proportion of grid 
cells that have 
been tilled since 
2008 within a 
6440-m area

Established negative relationship 
between sage-grouse and 
cropland (Knick et al. 2013, Fedy 
et al. 2014)

Note: All variables with the exception of the climate date predictor group were quantified using a 6.4-km buffer moving 
window (130.1 km2).

† All variables were resampled to a 120 × 120 m pixel. All moving windows were calculated at a 6440-m (4-mile) buffer. Oil 
and gas layers were also calculated at a 2-mile moving window because of variations in the distance the impact was detected 
(Naugle et al. 2011a). We did not use the 120 × 120 m pixels for modeling because leks are a surrogate of habitat at a larger 
scale.

‡ Landfire vegetation groupings defined in Johnson et al. (2011) SAB.
§ Because climate grids of native resolution change at a 1-km scale and are highly spatially correlated, we did not resample 

the grids using a 6440-m moving window.
¶ NLCD urban development classes: developed, high intensity; developed low intensity; developed medium intensity; 

developed, open space; and NLCD impervious surfaces. The index also included roads (TIGER), oil and gas wells (compiled 
by each state), wind turbines (FCC obstruction database), transmission lines (Ventyx), and pipelines (Ventyx).

Table 2. Continued.
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regression tree (CART) approach (Hastie et  al. 
2008). Random Forests is based on the principle 
of weak learning, where a set of weak subsample 
models converge on a stable global model. This 
method has been shown to provide stable esti-
mates while being robust to many of the issues 
associated with spatial data (Cutler et  al. 2007, 
Evans et  al. 2011) such as autocorrelation and 
nonstationarity (i.e., nonconstant mean and vari-
ance). It also fits complex, nonlinear relationships, 
accounts for high-dimensional interaction effects, 
and accounts for hierarchically structured data 
inherent in nonstationary processes (Cutler et al. 
2007, Evans et al. 2011). We expected both global 
trends in sage-grouse habitat selection and local-
ized variation in habitat selection within each of 
the seven sage-grouse management zones. First- 
and second-order variations are addressed in the 
hierarchical nature of the iterative node parti-
tioning, making this a good model to implement 
when global trend and local variations (Cressie 
1991) are expected to occur in the same model 
(Evans et  al. 2011). Analysis was conducted in 
program R (R Core Team 2012) using the rgdal 
(Bivand et al. 2013), sp (Bivand et al. 2008), and 
raster (Hijmans and Etten 2013) libraries to read 
spatial data, assign values from spatial covari-
ates to the point observations of our dependent 
variable, and make spatial predictions. We used 
the implementation of Random Forests (Breiman 
2001) in the R library Random Forest (Liaw and 
Wiener 2002) and followed the model selection 
method introduced in Murphy et al. (2010) using 
the rfUtilities library (Evans and Murphy 2014). 
Parsimony in Random Forests is important not 
only for producing a more interpretable model 
but also for reducing any fitting of the model to 
statistical noise, thus providing a better model fit 
(Murphy et al. 2010, Evans et al. 2011).

Evaluation of model fit and spatial predictions
To assess model fit, we used OOB (out-of-bag) 

error and confusion matrixes (Liaw and Wiener 
2002). The OOB error represents the internal eval-
uation of global and class error against the with-
held data from the bootstrap and represents an 
error distribution across all bootstrap replicates in 
the ensemble where the median error is used to 
represent the OOB error. We evaluated model sta-
bility and performance using cross-validation 
methods (Evans et  al. 2011), where 10% of data 

were withheld from training the model and used 
as a validation data set. Overfitting was assessed 
by comparing error rates between OOB and 
cross-validation.

We also tested the sensitivity of the fitted model 
to errors in classification between used vs. avail-
able locations in the rfUtilities library (Evans and 
Murphy 2014) by randomly changing known 
lek locations to pseudoabsence points and eval-
uating cross-classification errors. We systemat-
ically changed known lek locations to zeros in 
5% increments to understand the influence of 
pseudoabsence errors on overall error rates and 
model stability. This was performed because an 
unknown portion of our pseudoabsence locations 
were expected to fall within suitable sage-grouse 
breeding habitat. The primary motivation behind 
implementing a sensitivity test was to address 
model sensitivity to any lack of independence. A 
pseudoreplication problem would also affect the 
independence (correlation) of the bootstraps and 
potentially overfit the model. Because ensemble 
models are based on the premise of weak learn-
ing and variation in the bootstrap, if the data are 
homogenous, the bootstraps would not be inde-
pendent and the ensemble would exhibit con-
siderable correlation and effectively overfit the 
model. In evaluating model fit and convergence, 
we did not observe any indication of ensemble 
correlation. The sensitivity test allowed better 
understanding of overall error rates within our 
model, and more importantly, it allowed the 
assessment of model stability and prediction con-
gruency across a range of lek locations that are 
misclassified as pseudoabsence.

Regional variation in habitat selection  
and disturbance thresholds

We used probability partial plots to elucidate 
habitat relationships of the modeled covariates 
after partialing out (holding constant) the other 
variables in the model. To improve interpretabil-
ity, we plotted each given covariate for all man-
agement zones on the same plot. The probability 
partial plots were derived using the rfUtilities 
library (Evans and Murphy 2014).

Management zone VII
Management zone VII, while modeled, has a 

very small sample size (~0.3% of counted birds 
between 2010 and 2014) and only contains 
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652  km2 of the 192,381  km2 modeled breeding 
habitat (Table 5). Therefore, we did not focus on 
these results in the general manuscript or include 
MZ VII in figures highlighting functional habitat 
responses.

Breeding population index model
To map high-abundance population centers, 

we followed the methods and logic very similar 
to the models developed by the U.S. Geological 
Survey (USGS) for the Bi-State Distinct Popula
tion Segment of sage-grouse (Coates et al. 2015). 
Distribution models that combine information 
about habitat quality and abundance of sage-
grouse from multiple data sources are valuable 
given recent intensification of sage-grouse man-
agement and policymaking (Coates et al. 2015). 
We modified their methods (Coates et al. 2015) 
to better represent a sage-grouse population 
index, because their original technique was 
developed to highlight management priority 
areas. Our final population index model incor-
porated two standardized kernel-based point 
density models, representing local and regional 
scales and our breeding habitat model described 
earlier. The results of our models are grids that 
represent an index to the relative amount of 
breeding birds for each 120 × 120 m area within 
each management zone. Our final population 
index model incorporates spatial patterns of 
sage-grouse habitat selection with contempo-
rary information of abundance allowing the use 
of the available data, as proxies for management 
(Stephens et  al. 2015). Population indices, such 
as ours, allow conservation actions to be tar-
geted to the right landscapes, and help identify 
threats to a species that are occurring in areas 
that could impact large proportions of sage-
grouse populations.

Kernel density function.—Kernel density func
tions have been commonly used in ecology to 
delineate home ranges of individual animals and 
to map concentrated areas of use by populations 
(Silverman 1986, Worton 1989). Within our study, 
we used the kernel density function to group 
cells of concentrated use by attributing count 
data to a grid placed over top of a sage-grouse 
management zone (Silverman 1986, Worton 
1989). Using kernels to define population con
centrations is consistent with past work defining 
core areas for sage-grouse (Doherty et al. 2011). 

We created two kernel models based on two 
separate bandwidth values (i.e., 6.4 and 18 km), 
which  reflect published information on sage-
grouse movement and seasonal space-use 
patterns. The 6.4-km bandwidth was chosen to 
correspond with utilization distribution of areas 
conducive for reproduction in relation to lek sites 
(e.g., breeding, nesting, brood-rearing), as dem
onstrated in populations at multiple sites 
(Holloran and Anderson 2005, Doherty et  al. 
2011, Coates et al. 2013). Although leking areas 
generally serve as hubs for nesting and are 
usually centered across seasonal areas (Coates 
et  al. 2013), some sage-grouse move relatively 
long distances to access wintering areas (Fedy 
et  al. 2012, Coates et  al. 2013). Thus, we incor
porated the larger spatial scale of 18 km to reflect 
these life history patterns (Fedy et  al. 2012). 
Combining the scales appropriately placed 
greater emphasis on adjacent areas, thus 
preventing oversmoothing, but still allowed for 
the representation of sage-grouse occurrence at 
further distances. We used SAGA-GIS version 
2.1.0 (SAGA-GIS 2015) to create two Gaussian 
kernel density functions. The same set of active 
lek locations from our habitat model defined the 
point density for our kernel models, and each 
point was weighted by the mean peak count of 
displaying sage-grouse from 2010 to 2014. 
Following the logic of Coates et  al. (2014), we 
standardized each kernel using a row standar
dization. We then added each grid together and 
divided by 2, using the raster library (Hijmans 
and Etten 2013) in R. The output is a 120 × 120 m 
raster that represents a multiscale density process 
of sage-grouse lek counts across two biologically 
meaningful scales (Eq. 1). 

Population index.—Our Kernel Index summar
izes the best available information on the relative 
density of birds across the entire sage-grouse 
range. We selected bandwidths to correspond 
with linear movement distance of sage-grouse 
within the breeding season (Doherty et al. 2011), 
as well as movements between breeding and 
other seasonal habitats (Fedy et  al. 2012). We 
believe that the combination of both kernels into 
a single Kernel Index represents ecologically 

(1)

Kernel Index = (standardized 6.4-kmkernel
+ standardized 18-kmkernel)∕2
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meaningful areas for sage-grouse. However, ker
nel functions are inherently an estimator of the 
spatial point density process, and thus, they are 
not explicitly linked to habitat features.

We wanted to create a population index to fur-
ther refine our Kernel Index. First, we wanted 
a method that would reduce the importance of 
lands with low probabilities of being habitat 
based upon known sage-grouse habitat relation-
ships. Secondly, we wanted to increase the value 
of lands with high probabilities of being occu-
pied habitat, but further away from known leks, 
thus having lower value in the Kernel Index. We 
did this by multiplying the Kernel Index by the 
probability of our breeding habitat model (Eq. 2). 

Highest population index values arise where 
high breeding habitat probabilities co-occur 
with landscapes having higher lek counts. The 
use of this equation also effectively reduces the 
value of landscapes near larger sage-grouse leks, 
which are effectively nonhabitat based upon the 
prediction of the breeding habitat model. Lastly, 
multiplying the Kernel Index by the breeding 
habitat model increases the value of lands fur-
ther from known sage-grouse leks that have high 
probabilities of containing breeding sage-grouse. 
We thought that this was important because our 
data set utilized all known sage-grouse popula-
tion survey data across their range; however, our 
survey data do not represent all leks.

Aggregation using population index volumes
We ordered all population index values from 

each grid cell within a management zone from 
the highest to lowest density. We selected the 
highest density cells in order until they summed 
to 10% of the total population index within a 
management zone. We repeated the selection 
process in 10% increments selecting the highest 
remaining grid cell densities first until we had 10 
bins (i.e., highest density bin represented the top 
10% of the population, 100% bin representing all 
breeding areas identified in modeling). Results 
are cumulative, such that all bins contain all pre-
ceding bins of 10% increments. We then calcu-
lated the percentage of the occupied distribution 
within each incremental 10% population bin.

Results

Breeding habitat model
On average, our breeding habitat model cor-

rectly classified 82.0% (range: 75.4–88.0%) of 
hold-out data from OOB samples (Table 3). Our 
models also correctly classified independent 
K-fold hold-out data (mean across management 
zones  =  80.9%; range: 75.0–85.8%) (Table  3). 
General agreement between OOB error rates and 
K-fold cross-validation indicates stability in our 
model to predict independent data and lack of 
overfitting (Table  3). We documented higher 
error rates within pseudoabsence classes com-
pared with our active lek class (Table  4); how-
ever, simulations indicated that estimates were 
stable across a wide range of pseudoabsence 
errors (0–30% simulated errors in 5% incre-
ments). For example, the mean SE across the 
seven management zones with 20% simulated 
pseudoabsence errors is 0.032. Low SE indicates 
model stability and the ability of the Random 
Forests to predict through statistical noise arising 
from points that were modeled as absences, 
which in fact supports lek formation (i.e., false 
absence). We documented a ~3% error increase 
for every 5% increase in false absences.

(2)
Population index = (Kernel Index

× breeding habitatmodel)

Table 3. Percentage of K-fold cross-validation hold-
out data set locations (10%) that were correctly clas-
sified by a model built with 90% of the data set.

Management zone
1—out-of-
bag error

K-fold 
cross-validation % 
correctly classified

MZ I—Northern 
Great Plains

76.3 75.9

MZ II—Wyoming 
Basin

75.4 75.0

MZ III—Southern 
Great Basin

85.9 85.3

MZ IV—Snake 
River Plain

83.9 83.6

MZ V—Northern 
Great Basin

76.3 75.1

MZ VI—Columbia 
Basin

88.0 85.8

MZ VII—Colorado 
Plateau

88.0 85.4

Average 82.0 80.9

Note: These results are compared with internal model fit 
statistics generated via bootstrap resampling (1—out-of-bag 
error bootstrap error rates).
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Models demonstrate that breeding habitat is 
highly condensed within the current occupied 
range of sage-grouse (Fig. 2). All currently active 
leks occurred on probabilities >0.65; we there-
fore used this threshold to quantify the amount 

of breeding habitat. When we use this thresh-
old value, 26% of the current occupied range 
is predicted to be breeding habitat (Table  5, 
Fig. 2). Across the range of sage-grouse, general 
habitat variables and climatic gradient vari-
ables had greater importance than disturbance 
variables in predicting occupied breeding hab-
itat (Table  6; Appendix S2). Not surprisingly, 
a positive association with the percentage of 
a landscape dominated by sagebrush within 
130.1 km2 (50.24 mile2; 32,153 acres) was the top 
variable in four of the seven models and was in 
the top five variables for all models (Table  6). 
We documented variation in habitat selection 
for sagebrush but also show similar patterns 
across the range (Fig.  3). However, functional 
habitat selection for sagebrush modeled for 
the Northern Great Plains and Columbia Basin 
management zones diverged from results for 
the rest of the management zones, because 
sage-grouse were modeled to occupy habitats 

Table 4. Classification confusion error rates for leks 
and pseudoabsence locations.

Management zone
Pseudoabsence 

(%)
Leks 
(%)

MZ I—Northern Great Plains 29.8 16.9
MZ II—Wyoming Basin 32.7 16.5
MZ III—Southern Great Basin 18.0 9.9
MZ IV—Snake River Plain 21.0 11.3
MZ V—Northern Great Basin 29.4 19.7
MZ VI—Columbia Basin 12.0 12.0
MZ VII—Colorado Plateau 12.0 10.0

Notes: Error rates were generated from bootstrap resam-
pling. Across management zones, there was a general pattern 
of higher errors in the pseudoabsence class, with the excep-
tion of the two smallest management zones, the Columbia 
Basin and the Colorado Plateau.

Fig.  2. Breeding habitat model of Greater Sage-Grouse developed within each of the seven management 
zones. The breeding habitat model is a spatially explicit probability prediction that the surrounding landscape 
will contain enough breeding habitat to support Greater Sage-Grouse lek formation. All active leks within the 
sage-grouse range (2010–2014) occurred on probabilities >0.65.
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with lower proportions of sagebrush in zones 
I and VI (Fig. 3). All sage-grouse breeding hab-
itats showed strong avoidance of tree cover; 
however, strength of avoidance varied between 
management zones (Fig. 4). The human distur-
bance index was selected within models for all 
management zones except the Northern Great 
Basin with a variable importance range (0.48 
for Colorado Plateau to 0.09 for Southern Great 
Basin, Table  6; Appendix S2). While threshold 

values between management zones varied sim-
ilar to tree canopy cover, models documented 
clear thresholds in amount of landscape-
level disturbance tolerated and exhibited the 
sharpest declines in probability distributions 
once thresholds were crossed (Fig.  5). Models 
showed that Northern Great Plains manage-
ment zone had the lowest threshold for the 
human disturbance index (2.9% when P ~ 0.65, 
Fig. 5). Models also documented variability and 

Table 6. Top five variables and their importance values selected for each management zone from 2010 to 2014.

Management zone First variable Second variable Third variable Fourth variable Fifth variable

Northern Great Plains Canopy cover All sagebrush Roughness Topographic 
wetness index

Gross primary 
production

(I) 1.00 0.63 0.57 0.55 0.45
Wyoming Basin All sagebrush Canopy cover Annual drought 

index
Degree 

days > 5°C
Mean annual 

precipitation
(II) 1.00 0.73 0.68 0.59 0.49
Southern Great Basin All sagebrush Degree 

days > 5°C
Elevation Annual drought 

index
Canopy cover

(III) 1.00 0.79 0.70 0.54 0.48
Snake River Plain Canopy cover Annual drought 

index
All sagebrush Degree 

days > 5°C
Gross primary 

production
(IV) 1.00 0.60 0.59 0.51 0.50
Northern Great Basin All sagebrush Annual drought 

index
Low sagebrush Mean annual 

precipitation
Degree 

days > 5°C
(V) 1.00 0.96 0.91 0.79 0.65
Columbia Basin Elevation Degree 

days > 5°C
Grassland/

herbaceous
Annual drought 

index
All sagebrush

(VI) 1.00 0.42 0.41 0.27 0.22
Colorado Plateau All sagebrush Low sagebrush Human 

disturbance 
index

Oil and gas wells

(VII) 1.00 0.67 0.48 0.40

Notes: Importance values are scaled by management zone, so that the top variable equals 1 and the remaining variables are 
a proportion derived by dividing by the top variable, and are derived from probability-scaled partial plots in the Random 
Forest package in R. Variable importance values for the remaining retained variables (6th to 10th) are in Appendix S2 and, in 
some cases, explain similar amounts of variation as the fifth variable.

Table 5. Area (km2) of occupied range (Schroeder et al. 2004) and modeled breeding habitat across the Greater 
Sage-Grouse range in North America.

Management zone Occupied range Modeled breeding habitat Percentage of occupied range

MZ I—Northern Great Plains† 186,480 41,731 22
MZ II—Wyoming Basin 149,820 48,189 32
MZ III—Southern Great Basin 124,057 36,629 30
MZ IV—Snake River Plain 156,360 46,700 30
MZ V—Northern Great Basin 78,293 14,018 18
MZ VI—Columbia Basin 11,161 4462 40
MZ VII—Colorado Plateau 4777 652 14
Rangewide† 710,948 192,381 26

Note: Breeding habitat probabilities were calculated using a 0.65 threshold, because all current active leks had a probability 
>0.65.

† Does not include the Canadian portion of the range.
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differences in threshold values for the amount 
of tillage in the landscape, with sage-grouse in 
management zone I showing the least tolerance 
for tilled landscapes (Fig. 6). Despite variability 
in disturbance and nonhabitat thresholds, we 
found similar patterns in the peaks of probabil-
ity distributions (P > 0.8) for our two strongest 
historic climatic predictors (annual drought 
index [Fig.  7] and degree days  > 5°C [Fig.  8]). 
A current measure of climate as measured by 
gross primary production had lower variable 
importance than our historic climate envelopes 
in model selection (Table  6). We documented 
similar patterns of selection for gross primary 
production, although peaks varied across the 
range with the lowest selected range of gross 
primary production in the Northern Great 

Basin and the highest in the Northern Great 
Plains (Fig. 9).

Breeding population index model
We demonstrate distinct clustering in the rela-

tive abundance of sage-grouse populations 
within each management zone (Figs. 10 and 11). 
On average, approximately half of the breeding 
population is predicted to be within 10% of the 
occupied range. Across all management zones, 
all populations visually demonstrated asymp-
totic properties between each additional 10% of 
the population and the area required to contain 
those populations (Fig.  11). For example, to go 
from 80% of the population index to 90%, 
increased the area required by 44% on average 
(range: 41% MZ II to 50% MZ I; Fig. 11).

Fig. 3. Functional habitat response between the percentage of all sagebrush cover types (x-axis) within a 6.4-
km buffer (130.1 km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support 
Greater Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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Discussion

Clustering of populations is a common ecologi-
cal phenomenon (e.g., Brown et al. 1995, Murphy 
et al. 2006). Knowledge of these high-value areas 
can direct management actions to landscapes 
where they will have the largest benefit to regional 
populations (Sanderson et al. 2002, Groves 2003). 
We documented pronounced clustering in the 
relative abundance of sage-grouse populations 
within each management zone (Figs. 10 and 11), 
consistent with past work at regional (Doherty 
et al. 2010a, Coates et al. 2014), state (Fedy et al. 
2014), and local scales (Aldridge and Boyce 2007, 
Doherty et  al. 2010b). Our results indicate that 
approximately half of the breeding population 
is within ~10% of the range. We also found that 

80% of sage-grouse populations were contained 
in 25–34% of the occupied range within each 
management zone. Across all management zones, 
all populations showed an exponential increase 
in the area required to contain each additional 
10%  of the population (Fig.  11). Because sage-
grouse exhibit markedly clustered populations, if 
landscape-level risks occur in high-density 
areas  they could negatively affect large propor-
tions of the populations. Conversely, focusing 
conservation efforts into landscapes that con-
tain  higher proportions of birds may demon
strate  substantially higher biological returns for 
conservation investments of similar acreages. 
Therefore we suggest that, birds, not acres or dol-
lars spent, would be the best currency in conser-
vation plans, because identical acreages of 

Fig. 4. Functional habitat response between tree canopy cover (x-axis) within a 6.4-km buffer (130.1 km2) and 
the probability (y-axis) a landscape will contain enough breeding habitat to support Greater Sage-Grouse lek 
formation within each management zone (2010–2014). Functional response curves were generated using partial 
probability plots to explore the influence of a given variable on the probability of occurrence while partialing out 
the average effects of all other variables in the final model.
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conservation actions can overlap with vastly dif-
ferent numbers of sage-grouse. Our population 
index models can be used to quantify the relative 
percentage of sage-grouse populations that over-
lap management areas, providing regional popu-
lation context to decisions and the relative ranking 
of landscape importance for sage-grouse. Simple 
spatial overlap analyses using our model are a 
first step in bringing context to the potential 
population-level effects of both deleterious and 
beneficial management decisions.

A trade-off exists between model predic-
tion and generalized biological understanding 
when selecting the appropriate spatial extent 
for the development of RSF models (Elith and 
Leathwick 2009). Reducing extent can increase 
model accuracy (Fedy et al. 2014), but at the cost 

of generalizability as the models explain vari-
ation over a smaller parameter space. Careful 
thought must be given to study objectives. Sage-
grouse management zones are based on unique 
floristic provinces (Stiver et  al. 2006, Appendix 
S1). The management zone extent represents 
a good trade-off for our goals because this 
extent allowed generalized broad-scale biolog-
ical  understanding across far-reaching extents 
and still retained high spatial predictive capabil-
ities within management zones.

The desired geographic scale of understanding 
is paramount in studies aimed at obtaining infer-
ence on selection behavior. Our study was spe-
cifically designed to assess first-order selection 
of sage-grouse seasonal home ranges (Johnson 
1980, Meyer and Thuiller 2006). The rationale for 

Fig. 5. Functional habitat response between the amount of human disturbance index (x-axis) within a 6.4-km 
buffer (130.1  km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support 
Greater Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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using the first-order scale was twofold: (1) The 
primary objective was to develop population and 
habitat models that account for regional varia-
tion within each sage-grouse management zone 
and (2) broad-scale lek data represent locations 
of populations and are not adequate to appropri-
ately model second- or third-order habitat selec-
tion (Johnson 1980, Meyer and Thuiller 2006). 
Lower orders of habitat selection are generally 
derived from finer-scale telemetry data at the 
individual level. Using first-order assessments 
here that produce a relative probability for each 
120  ×  120  m grid cell across the range of the 
species allows for later integration with other 
research at finer scales (e.g., second to fourth 
orders). We believe that investigating first-order 
habitat selection across the entire sage-grouse 

range is important, because understanding land-
scape context can elucidate why the results of 
second- and third-order habitat selection stud-
ies can seemingly give conflicting results and 
varying thresholds, even for well-studied topics 
(Donovan et al. 1997).

While generating biological insight into spe-
cies habitat selection is obviously important, one 
can argue that measures of model prediction and 
stability are even more important for conserva-
tion planning and risk analyses, especially when 
they may be utilized by agencies to spatially 
assess species risk, delineate priority areas, or 
direct resource allocation (see review in Elith and 
Leathwick 2009). Our models demonstrated high 
statistical model fit and demonstrated stability to 
withheld data (Tables 3 and 4). On average, our 

Fig. 6. Functional habitat response between the amount of tilled cropland (x-axis) within a 6.4-km buffer 
(130.1 km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support Greater 
Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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breeding habitat model correctly classified 82.0% 
(range: 75.4–88.0%) of hold-out data from OOB 
bootstrap samples and also correctly classified 
independent K-fold hold-out data (mean across 
management zones  =  80.9%; range: 75.0–85.8%, 
Table 3). General agreement between OOB error 
rates and K-fold cross-validation indicates stabil-
ity in our model to predict independent data and 
lack of overfitting (Shmueli 2010). Demonstrated 
model fit and validations were important, as this 
modeling effort was directly intended to assess 
sage-grouse spatial overlap with landscape-level 
risks.

Sage-grouse are a unique species in wild-
life management as we have broad-scale pop-
ulation surveys across the species range that 
follow a common survey protocol (i.e., lek 

counts, Connelly et  al. 2000). Additionally, 
although birds require unique habitat com-
ponents throughout their annual cycle, they 
do not migrate long distances and, with the 
exception of peripheral populations in Alberta 
and Saskatchewan, do not cross international 
borders. These characteristics simplify many 
management strategies and facilitate consis-
tency in survey protocols that allowed research 
into regional variation in functional responses. 
Additionally, broad-scale population data facil-
itate the development of integrative methodolo-
gies to create composite spatially explicit indices 
that reflect demographic and habitat informa-
tion within this study and others (Coates et al. 
2014). Indices such as these—particularly those 
that can be predicted spatially—can help guide 

Fig. 7. Functional habitat response between the average annual drought index (x-axis) within a 6.4-km buffer 
(130.1 km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support Greater 
Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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landscape-level conservation actions (Stephens 
et  al. 2015). However, in the context of our 
models, broad-scale lek data are inadequate for 
modeling second- or third-order habitat selec-
tion (Johnson 1980, Meyer and Thuiller 2006), 
which are known to be important determinants 
of sage-grouse habitat selection (Connelly et al. 
2000). Past research has used lek data as an inde-
pendent data source to validate landscape-level 
spatial predictions of second- and third-order 
habitat selection models generated from telem-
etry data in both Greater Sage-Grouse (Doherty 
et al. 2010b, Fedy et al. 2014) and Gunnison Sage-
Grouse (Aldridge et  al. 2012). Thus, first-order 
habitat selection models will give regional con-
text to priority breeding areas, but should not be 
viewed as prescriptive at the site level. It should 

be expected that some priority areas identified at 
the first-order scale will lack appropriate habitats 
at the second- or third-order scale and therefore 
may be unoccupied. Site-scale recommendations 
will require input from local biologist as well as 
finer-resolution data (e.g., telemetry data, GPS 
movements, soil types, local vegetation).

Lek data seem to represent the overall spatial 
process of relative abundance for sage-grouse, 
particularly in recent years due to the dramatic 
increases in survey effort over the last decade 
(WAFWA 2015). However, sage-grouse lek sur-
veys follow a common survey protocol; they do 
not follow a statistical design. A design-based 
survey with a dual-frame sampling protocol 
(Haines and Pollock 1998, Royle et  al. 2005) 
would strengthen analyses allowing estimation 

Fig.  8. Functional habitat response between the average degree day 5°C (x-axis) within a 6.4-km buffer 
(130.1 km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support Greater 
Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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and understanding of implications of currently 
inestimable parameters, such as the effects of 
sampling variation and detection probabilities 
on count estimates, or the proportion of leks 
surveyed each year (Blomberg et al. 2013a). The 
latter parameter is one of the most important 
breakthroughs, because it could allow more 
robust estimates of population size with asso-
ciated variances, vs. the reasonable, but ad hoc 
approaches used to generate current minimum 
population estimates (WAFWA 2015). A recent 
example of a statistically rigorous framework for 
estimating populations in a similar species, lesser 
prairie chickens (Tympanuchus pallidicinctus), 
could provide guidance for such an approach in 
sage-grouse (McDonald et  al. 2014). Ultimately, 
the above limitations affect the scale of inference. 

Models developed using these data should be 
viewed as regional indices for conservation plan-
ning and risk assessment. Because our goal was 
to provide regional context and relative ranking 
of landscape importance for sage-grouse, the use 
of lek count data was appropriate.

Landscapes are seldom homogeneous across 
large extents. Thus, landscape-scale modeling 
is important to understand how functional res
ponses vary for wide-ranging species. Variation 
in functional response to particular habitat 
components has been documented in ungu-
lates (Godvik et  al. 2009, Herfindal et  al. 2009, 
Moreau et  al. 2012, Beyer et  al. 2013), wolves 
(Hebblewhite and Merrill 2008, Houle et  al. 
2010, Matthiopoulos et al. 2011), and other large 
mammals (Gillies et al. 2006, Roever et al. 2012). 

Fig. 9. Functional habitat response between the gross primary production (x-axis) within a 6.4-km buffer 
(130.1 km2) and the probability (y-axis) a landscape will contain enough breeding habitat to support Greater 
Sage-Grouse lek formation within each management zone (2010–2014). Functional response curves were 
generated using partial probability plots to explore the influence of a given variable on the probability of 
occurrence while partialing out the average effects of all other variables in the final model.
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Typically, these studies focused on the spatial 
scales of inter-home range variation within one 
to several subpopulations (Mysterud and Ims 
1998, Gillies et al. 2006, Hebblewhite and Merrill 
2008, Herfindal et  al. 2009, Houle et  al. 2010). 
Some studies have moved further along the hier-
archical order of habitat selection (Johnson 1980) 
and focused on within-home range variation in 
functional response (Houle et  al. 2010, Moreau 
et  al. 2012). However, almost all these stud-
ies were driven by high-input and high-detail 
Global Positioning System (GPS) radiotelemetry 
data, with few exceptions (Mysterud and Ims 
1998, Herfindal et al. 2009). We demonstrate that 
less detailed data (i.e., lek survey data), collected 
across large extents (i.e., the entire species range), 
can also highlight the regional variation in func-
tional responses. Our analyses clearly highlight 

that understanding regional variation in habitat 
selection is critical to designing effective conser-
vation plans for sage-grouse.

We documented variability in sage-grouse 
functional response to sagebrush across the 
range (Fig.  3). Not surprisingly, sage-grouse 
showed strong selection for landscape-level sage-
brush with the exception of the Columbia Basin 
(see variable justification in Table 2 and Fig. 3). 
While landscape-scale extents differed, our sage-
brush functional response curves broadly agreed 
with other landscape-level assessments, which 
recommended >50% sagebrush cover (Wisdom 
et al. 2011) and >65% sagebrush cover (Aldridge 
et  al. 2008). More recent analyses documented 
that 90% of the active leks in the western range 
of sage-grouse occurred in landscapes with at 
least 40% sagebrush (Knick et al. 2013). All active 

Fig. 10. Breeding population index model of Greater Sage-Grouse within each of the seven management 
zones. Our population index model provides spatial insight into the relative importance of specific areas to the 
overall management zonewide breeding abundance of Greater Sage-Grouse during 2010–2014. Population index 
values are relative within each management zone. Sage-grouse population index areas represent spatial locations 
of the known breeding population in 10% bins differentiated by color. The darkest red areas contain 10% of the 
breeding population in the smallest area. Because bins are additive, red and orange hue areas combined capture 
50% of the population, etc.
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leks within our habitat selection model had pre-
dicted occupancy probabilities >0.65. When the 
probability of occurrence crossed this threshold, 
we documented sagebrush cover ranging from 
~35% (Wyoming Basin) to ~55% (Southern Great 
Basin) (Fig. 3). These threshold values are lower 
than previously documented; however, contem-
porary thresholds of occurrence could be lower 
than recommendations for rangewide averaged 
responses for long-term persistence (Aldridge 
et al. 2008, Wisdom et al. 2011). Additionally, our 
threshold estimates are similar to estimates of 
ecological minimum requirements (Knick et  al. 
2013). These past analyses averaged habitat or 
population responses of sage-grouse at range-
wide (Aldridge et al. 2008, Wisdom et al. 2011) 
or the entire western-range (MZ III–VI) extents 
(Knick et  al. 2013). Generating averaged func-
tional habitat response across very large extents 
clearly furthers biological understanding, yet by 
design they cannot elucidate regional differences 
in functional responses if they exist. We also 
documented divergence in the Northern Great 
Plains, which crossed the probability of occur-
rence threshold at ~20% sagebrush cover (Fig. 3). 
We showed variation in functional responses 
across a wide range of variables within all man-
agement zones; however, the Columbia Basin 

and Northern Great Plains consistently showed 
the greatest divergence in functional habitat 
selection. Spatial interpolation or extrapolation 
of habitat selection models is most accurate when 
the availability of habitats is approximately the 
same in the novel areas (Mladenoff et  al. 1999, 
Aarts et  al. 2008) because of the functional 
response in habitat use (Mysterud and Ims 1998). 
Similarly, models averaging habitat responses 
across the range of sage-grouse are likely to mis-
classify important habitats when landscape con-
text diverges from rangewide averaged habitat 
conditions such as the Columbia Basin and 
Northern Great Plains management zones.

Parallel to many other recent studies at land-
scape scales (Aldridge and Boyce 2007, Doherty 
et al. 2008, Knick et al. 2013, Coates et al. 2014, 
Fedy et al. 2014), our research also suggests that 
sage-grouse occupancy is more complicated than 
just sagebrush abundance; other core environ-
mental conditions must be met for sage-grouse 
landscape occupancy. We also documented vari-
ability in thresholds of disturbance factors (i.e., 
tillage, conifer, human disturbance index) across 
the range of sage-grouse (Figs. 4–6). Sage-grouse 
are well known to avoid human disturbances 
(e.g., Naugle et  al. 2011b) and other nonhabi-
tat features such as conifers encroaching into 

Fig. 11. The percentage of the population index model and resulting percentage area of the entire population 
index model by management zones during 2010–2014.
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sagebrush-dominated landscapes (Baruch-
Mordo et al. 2013). We showed strong negative 
relationships between sage-grouse occurrence 
and tree canopy cover across each management 
zone, which was consistent with the highest reso-
lution and definitive study on the effects of coni-
fer encroachment (Baruch-Mordo et al. 2013). Yet, 
our results indicate that caution should be used 
when extrapolating results from small portions 
of the Northern Great Basin to other sage-grouse 
population across the range, because of regional 
variation in functional responses to tree cover. 
Sage-grouse populations in the Northern Great 
Plains and the Columbia Basin exhibited more 
pronounced avoidance of tree canopy cover than 
in the Northern Great Basin, while the more 
contiguous habitats of the Wyoming Basin and 
Southern Great Basin demonstrated more toler-
ance (Fig. 4). The human disturbance index was 
included in every management zone but one; 
however, human disturbance was less important 
in explaining occurrence than landscape-level 
sagebrush or climatic envelope variables (Table 6; 
Appendix S2). However, the human disturbance 
index exhibited the sharpest declines in proba-
bility distributions once thresholds were crossed, 
suggesting important tipping points for human 
disturbance in proximity to leks (Fig.  5). The 
variation in the functional response to human 
disturbance was substantial among management 
zones, demonstrating that a one-size-fits-all 
approach to acceptable disturbance thresholds 
around leks should exercise precaution and tar-
get the lowest threshold, or potentially adjust 
regionally. Avoidance of areas with relatively 
small amounts of human disturbance is consis-
tent with past research (Knick et al. 2013); how-
ever, direct comparison of rates across studies is 
not possible as the suite of variables and the scale 
at which they were quantified differed between 
studies.

If habitat fragmentation is a key determinant 
of where thresholds occur, we would expect to 
see habitat thresholds occurring earliest in land-
scapes with the highest levels of fragmentation 
(Hill and Caswell 1999, Fahrig 2003). Consistently 
across the range, the two most fragmented pop-
ulations with the highest amounts of agricul-
ture (Northern Great Plains and Columbian 
Basin; Appendix S1) had the lowest tolerance to 
human disturbance (Fig. 5). Increased impact of 

disturbance within fragmented habitats was also 
documented in relation to oil and gas develop-
ment across the state of Wyoming. Sage-grouse 
within the more fragmented habitats of north-
ern Wyoming (Great Plains management zone) 
showed increased population-level impacts 
within the same oil and gas development den-
sity categories, compared with the more contig-
uous habitats of southern Wyoming (Wyoming 
Basin management zone) (Doherty et al. 2010a). 
Variation in disturbance thresholds is also 
known to vary with habitat quality. For example, 
wolves (Canis lupis) in the boreal forest avoided 
anthropogenic development as disturbance den-
sities increased (Lesmerises et  al. 2012, Ehlers 
et al. 2014), but showed more tolerance of distur-
bance in high-quality prey habitats (Lesmerises 
et al. 2012). Further, habitat quality is more than 
simply food availability. For example, mule deer 
(Odocoileus hemionus) within the Piceance and 
Upper Green River Basins showed avoidance of 
oil and gas development; however, effect sizes 
were larger in the Upper Green River Basin 
(Sawyer et  al. 2006, Northrup et  al. 2015). The 
authors hypothesized that the more rugged areas 
of the Piceance Basin provided more security 
cover than the flatter areas of Upper Green River 
Basin (Northrup et al. 2015). This hypothesis was 
generated by observing behavior differences 
in which mule deer showed less avoidance of 
infrastructure when they had the security cover 
of darkness at night (Northrup et al. 2015). It is 
likely that the variation in sage-grouse response 
to disturbance observed in this study is influ-
enced by mechanisms related to fragmentation, 
habitat quality, or others. However, the finer-
scale data to test each of these hypotheses are 
not available rangewide. Regardless, the relevant 
point is that understanding variation in habitat 
selection and disturbance thresholds across large 
spatial extents is necessary to inform land-use 
management decisions that try to balance trade-
offs among competing interests.

Management implications
Our work is an improvement over past range-

wide population models (Doherty et  al. 2011) 
because it represents a comprehensive integra-
tion of both habitat and population information 
at a rangewide scale for sage-grouse while 
accounting for regional variation in habitat 
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selection and bird densities. Our models can 
serve as a consistent currency to assess the 
overlap of sage-grouse habitats (Fig. 2) and pop-
ulations (Fig.  10) with conservation actions or 
threats.

We also document the importance of regional 
variation in habitat selection and varying thresh-
olds in response to disturbance across the range. 
Partial probability plots highlight how ecolog-
ical gradients (Appendix S1) across the range 
(Table 5) can change functional habitat responses 
and ultimately predictions of breeding habitat. 
Our work highlights the need for careful consid-
eration when extrapolating results of studies in 
one management zone into others, especially if 
they have vastly different ecological context. Our 
study extent was rangewide and addressed first-
order selection of habitats within management 
zones. Thus, our results should apply to ques-
tions and management at that scale. However, 
management may require actions at smaller 
scales of selection, and we caution against imple-
menting smaller-scale actions based on the 
results presented here. Our results suggest that 
multiscale (first- to third-order) and cumulative 
effects should be investigated simultaneously in 
future research.

The complexities of ecological context fun-
damentally influence how species respond to 
other components in the system. In other words, 
where you draw your study boundaries funda-
mentally determines what you learn about the 
ecology of the species. We show this is true, 
even for a species as specialized as sage-grouse. 
Often, models do not encompass the entire 
range of a focal species, and therefore, biolog-
ical relationships or thresholds of disturbance 
are extrapolated to novel areas not included in 
the development of the models. Extrapolation of 
results into novel landscapes is often required 
as managers are mandated by law to make deci-
sions based upon the best available scientific 
information. Unfortunately, setting conservation 
targets based upon thresholds defined in other 
regions is precarious (Rhodes et al. 2008) because 
thresholds can vary tremendously across species 
and landscapes (van der Hoek et  al. 2015). For 
example, our results indicate that at the first-
order level, disturbance thresholds  defined in 
the Great Basin management zones would likely 
exceed sage-grouse occupancy requirements if 

extrapolated to the Great Plains and Columbia 
Basin management zones. When potential for 
conflict is high and thresholds are extrapolated 
into novel landscapes, clearly defined adaptive 
management goals and monitoring systems 
would be prudent. Within this adaptive manage-
ment framework, it is also critical that assump-
tions are stated explicitly and tested with data 
whenever possible.

Acknowledgments

We would like to thank San Stiver (WAFWA) for 
coordinating access with State Agencies and obtaining 
access to Greater Sage-Grouse lek data and Tom 
Remington (WAFWA) for providing access to a clean 
proofed lek databases that formed the basis of our 
model. We would also like to thank the members of 
the sage-grouse technical team for reviewing models 
and more importantly ensuring that spatial predic-
tions were consistent with landscapes they or their 
staff know about and actively manage. We would like 
to thank M. Hooten (USGS) and D. Johnson (USGS) for 
meaningful review of our techniques and suggested 
ideas that were incorporated in the development of the 
final breeding population index model. Tom Kimball 
of the USGS graciously facilitated the USGS peer-
review process. We would also like to thank Julie Yee 
(USGS statistician), Erik Blomberg (University of 
Maine), and David Dalgren (Utah State University) for 
very detailed and thorough reviews that greatly 
increased the clarity of this work. The findings and 
conclusions in this article are those of the authors and 
do not necessarily represent the views of the U.S. Fish 
and Wildlife Service. This product has been peer-
reviewed and approved for publication consistent 
with USGS Fundamental Science Practices. Use of 
trade, firm, or product names does not imply endorse-
ment by the U.S. Government.

Literature Cited

Aarts, G., M. MacKenzie, B. McConnell, M. Fedak, and 
J. Matthiopoulos. 2008. Estimating space-use and 
habitat preference from wildlife telemetry data. 
Ecography 31:140–160.

Aldridge, C. L., and M. S. Boyce. 2007. Linking 
occurrence and fitness to persistence: habitat-based 
approach for endangered greater sage-grouse. Eco-
logical Applications 17:508–526.

Aldridge, C. L., S. E. Nielsen, H. L. Beyer, M. S. Boyce, 
J. W. Connelly, S. T. Knick, and M. A. Schroeder. 
2008. Range-wide patterns of greater sage-grouse 
persistence. Diversity and Distributions 14:983–994.



October 2016 v Volume 7(10) v Article e0146224 v www.esajournals.org

﻿� Doherty et al.

Aldridge, C. L., D. J. Saher, T. M. Childers, K. E. 
Stahlnecker, and Z. H. Bowen. 2012. Crucial nest-
ing habitat for Gunnison sage-grouse: a spatially 
explicit hierarchical approach. Journal of Wildlife 
Management 76:391–406.

Barnett, J. K., and J. A. Crawford. 1994. Pre-laying 
nutrition of sage-grouse hens in Oregon. Journal of 
Range Management 47:114–118.

Baruch-Mordo, S., J. S. Evans, J. P. Severson, D.  E. 
Naugle, J. D. Maestas, J. M. Kiesecker, M. J. 
Falkowski, C. A. Hagen, and K. P. Reese. 2013. Sav-
ing sage-grouse from the trees: a proactive solution 
to reducing a key threat to a candidate species. Bio
logical Conservation 167:233–241.

Beyer, H. L., R. Ung, D. L. Murray, and M. J. Fortin. 
2013. Functional responses, seasonal variation 
and thresholds in behavioural responses of moose 
to road density. Journal of Applied Ecology 50: 
286–294.

Bivand, R. S., T. Keitt, and B. Rowlingson. 2013. rgdal: 
bindings for the Geospatial Data Abstraction 
Library. R package version 0.8-9. http://CRAN. 
R-project.org/package=rgdal

Bivand, R. S., E. J. Pebesma, and V. Gomez-Rubio. 
2008. Applied spatial data analysis with R. 
Springer, New York, New York, USA. http://www. 
asdar-book.org/

Blomberg, E. J., J. S. Sedinger, D. Gibson, P. S. Coates, 
and M. L. Casazza. 2014. Carryover effects and 
climatic conditions influence the postfledging sur-
vival of greater sage-grouse. Ecology and Evolu-
tion 4:4488–4499.

Blomberg, E. J., J. S. Sedinger, D. V. Nonne, and M. T. 
Atamian. 2013a. Annual male lek attendance 
influences count-based population indices of gre
ater sage-grouse. Journal of Wildlife Management 
77:1583–1592.

Blomberg, E. J., J. S. Sedinger, D. V. Nonne, and M. T. 
Atamian. 2013b. Seasonal reproductive costs con-
tribute to reduced survival of female greater sage-
grouse. Journal of Avian Biology 44:149–158.

Boyce, M. S., and L. L. McDonald. 1999. Relating 
populations to habitats using resource selection 
functions. Trends in Ecology & Evolution 14: 
268–272.

Breiman, L. 2001. Random forests. Machine Learning 
45:5–32.

Brown, J. H., D. W. Mehlman, and G. C. Stevens. 
1995. Spatial variation in abundance. Ecology 76: 
2028–2043.

Carwardine, J., K. A. Wilson, M. Watts, A. Etter, C. J. 
Klein, and H. P. Possingham. 2008. Avoiding costly 
conservation mistakes: the importance of defining 
actions and costs in spatial priority setting. PLoS 
ONE 3:e2586.

Coates, P. S., M. L. Casazza, E. J. Blomberg, S. C. 
Gardner, S. P. Espinosa, J. L. Yee, L. Wiechman, 
and B.  J. Halstead. 2013. Evaluating greater 
sage-grouse seasonal space use relative to leks: 
implications for surface use designations in sage-
brush ecosystems. Journal of Wildlife Manage-
ment 77:1598–1609.

Coates, P. S., et al. 2015. Integrating spatially explicit 
indices of abundance and habitat quality: an app
lied example for greater sage-grouse management. 
Journal of Applied Ecology 53:83–95.

Coates, P. S., B. J. Halstead, E. J. Blomberg, B. Brussee, 
K.  B. Howe, L. Wiechman, J. Tebbenkamp, 
K.  P.  Reese, S. C. Gardner, and M. L. Casazza. 
2014. A hierarchical integrated population model 
for greater sage-grouse (Centrocercus urophasia­
nus) in the bi-state distinct population segment, 
California and Nevada. US Geological Survey 
Open-File Report 2014–1165.

Connelly, J. W., S. T. Knick, M. A. Schroeder, and S. J. 
Stiver. 2004. Conservation assessment of greater 
sage-grouse and sagebrush habitats. Western Asso
ciation of Fish and Wildlife Agencies, Cheyenne, 
Wyoming, USA.

Connelly, J. W., M. A. Schroeder, A. R. Sands, and C. E. 
Braun. 2000. Guidelines to manage sage grouse 
populations and their habitats. Wildlife Society 
Bulletin 28:967–985.

Crawford, J. A., R. A. Olson, N. E. West, J. C. Mosley, 
M. A. Schroeder, T. D. Whitson, R. F. Miller, M. A. 
Gregg, and C. S. Boyd. 2004. Ecology and man-
agement of sage-grouse and sage-grouse habitat. 
Rangeland Ecology & Management 57:2–19.

Cressie, N. 1991. Statistics for spatial data. Wiley-
Interscience, New York, New York, USA.

Cutler, D. R., T. C. Edwards, K. H. Beard, A. Cutler, 
K. T. Hess, J. Gibson, and J. J. Lawler. 2007. Ran-
dom forests for classification in ecology. Ecology 
88:2783–2792.

Diggle, P. 1985. A kernel method for smoothing point 
process data. Applied statistics 34:138–147.

Doherty, K. E., D. E. Naugle, H. E. Copeland, 
A.  Pocewicz, and J. M. Kiesecker. 2011. Energy 
development and conservation tradeoffs: sys-
tematic planning for greater sage-grouse in their 
eastern range. Pages 505–516 in S. T. Knick and 
J. W. Connelly, editors. Greater sage-grouse: ecol-
ogy and conservation of a landscape species and 
its habitats. Studies in Avian Biology. Volume 38. 
University of California Press, Berkeley, California, 
USA.

Doherty, K. E., D. E. Naugle, and J. S. Evans. 2010a. 
A currency for offsetting energy development 
impacts: horse-trading sage-grouse on the open 
market. PLoS ONE 5:e10339.

http://CRAN.R-project.org/package=rgdal
http://CRAN.R-project.org/package=rgdal
http://www.asdar-book.org/
http://www.asdar-book.org/


October 2016 v Volume 7(10) v Article e0146225 v www.esajournals.org

﻿� Doherty et al.

Doherty, K. E., D. E. Naugle, and B. L. Walker. 2010b. 
Greater sage-grouse nesting habitat: the impor-
tance of managing at multiple scales. Journal of 
Wildlife Management 74:1544–1553.

Doherty, K. E., D. E. Naugle, B. L. Walker, and J. M. 
Graham. 2008. Greater sage-grouse winter habi-
tat selection and energy development. Journal of 
Wildlife Management 72:187–195.

Donovan, T. M., P. W. Jones, E. M. Annand, and F. R. 
Thompson. 1997. Variation in local-scale edge 
effects: mechanisms and landscape context. Ecol-
ogy 78:2064–2075.

Ehlers, L. W., C. Johnson, and D. Seip. 2014. 
Movement  ecology of wolves across an industri-
al landscape supporting threatened populations 
of  woodland caribou. Landscape Ecology 29: 
451–465.

Elith, J., and J. R. Leathwick. 2009. Species distribu-
tion models: ecological explanation and prediction 
across space and time. Annual Review of Ecology, 
Evolution, and Systematics 40:677–697.

Evans, J. S. 2015. spatialEco: an R package for spatial 
analysis and modeling. R package version 0.1-1. 
http://cran.r-project.org/package=spatialEco

Evans, J. S., and S. A. Cushman. 2009. Gradient model-
ing of conifer species using random forests. Land-
scape Ecology 24:673–683.

Evans, J. S., and M. A. Murphy. 2014. rfUtilities. 
R  package version 1.0-0, http://CRAN.R-project.
org/package=rfUtilities

Evans, J. S., M. A. Murphy, Z. A. Holden, and S. A. 
Cushman. 2011. Modeling species distribution and 
change using random forests in predictive spe-
cies and habitat modeling. Pages 139–159 in C. A. 
Drew, Y. F. Wiersman, and F. Huettmann, editors. 
Landscape ecology: concepts and applications. 
Springer, New York, New York, USA.

Fahrig, L. 2003. Effects of habitat fragmentation on 
biodiversity. Annual Review of Ecology, Evolution, 
and Systematics 34:487–515.

Fedy, B. C., K. E. Doherty, C. L. Aldridge, M. O’Don-
nell, J. L. Beck, B. Bedrosian, D. Gummer, M. J. 
Holloran, G. D. Johnson, and N. W. Kaczor. 2014. 
Habitat prioritization across large landscapes, 
multiple seasons, and novel areas: an example 
using greater sage-grouse in Wyoming. Wildlife 
Monographs 190:1–39.

Fedy, B. C., et  al. 2012. Interseasonal movements 
of  greater sage-grouse, migratory behavior, and 
an assessment of the core regions concept in 
Wyoming.  Journal of Wildlife Management 76: 
1062–1071.

Gibson, R. M. 1996a. Female choice in sage grouse: the 
roles of attraction and active comparison. Behav-
ioral Ecology and Sociobiology 39:55–59.

Gibson, R. M. 1996b. A re-evaluation of hotspot settle-
ment in lekking sage grouse. Animal Behaviour 
52:993–1005.

Gibson, R. M., and T. A. Langen. 1996. How do animals 
choose their mates? Trends in Ecology & Evolution 
11:468–470.

Gillies, C. S., M. Hebblewhite, S. E. Nielsen, 
M. A. Krawchuk, C. L. Aldridge, J. L. Frair, D. J. Saher, 
C. E. Stevens, and C. L. Jerde. 2006. Application of 
random effects to the study of resource selection by 
animals. Journal of Animal Ecology 75:887–898.

Godvik, I. M. R., L. E. Loe, J. O. Vik, V. Veiberg, 
R.  Langvatn, and A. Mysterud. 2009. Temporal 
scales, trade-offs, and functional responses in red 
deer habitat selection. Ecology 90:699–710.

Gregory, A. J., and J. L. Beck. 2014. Spatial hetero
geneity in response of male greater sage-grouse 
lek attendance to energy development. PLoS ONE 
9:e97132.

Groves, C. R. 2003. Drafting a conservation blueprint: 
a practitioner’s guide to planning for biodiversity. 
Island Press, Washington, DC, USA.

Haines, D. E., and K. H. Pollock. 1998. Estimat-
ing the number of active and successful bald 
eagle nests: an application of the dual frame 
method.  Environmental and Ecological Statistics 
5:245–256.

Hastie, T., R. Tibshirani, and J. Friedman. 2008. The 
elements of statistical learning. Second edition. 
Springer-Verlag, New York, New York, USA.

Hebblewhite, M., and E. Merrill. 2008. Modelling 
wildlife–human relationships for social species 
with mixed-effects resource selection models. Jour-
nal of Applied Ecology 45:834–844.

Herfindal, I., J. P. Tremblay, B. B. Hansen, E. J. Solberg, 
M. Heim, and B. E. Saether. 2009. Scale dependency 
and functional response in moose habitat selection. 
Ecography 32:849–859.

Hess, J. E., and J. L. Beck. 2012. Disturbance factors 
influencing greater sage-grouse lek abandonment 
in north-central Wyoming. Journal of Wildlife 
Management 76:1625–1634.

Hijmans, R. J., and J. V. Etten. 2013. raster: geo-
graphic data analysis and modeling. R package 
version 2.1-25. http://CRAN.R-project.org/pack 
age=raster

Hill, M., and H. Caswell. 1999. Habitat fragmentation 
and extinction thresholds on fractal landscapes. 
Ecology Letters 2:121–127.

Holloran, M. J., and S. H. Anderson. 2005. Spa-
tial distribution of greater sage-grouse nests in 
relatively contiguous sagebrush habitats. Condor 
107:742–752.

Houle, M. L., D. Fortin, C. Dussault, R. H. Courtois, 
and J. P. Ouellet. 2010. Cumulative effects of 

http://cran.r-project.org/package=spatialEco
http://CRAN.R-project.org/package=rfUtilities
http://CRAN.R-project.org/package=rfUtilities
http://CRAN.R-project.org/package=raster
http://CRAN.R-project.org/package=raster


October 2016 v Volume 7(10) v Article e0146226 v www.esajournals.org

﻿� Doherty et al.

forestry on habitat use by gray wolf (Canis lupus) 
in the boreal forest. Landscape Ecology 25:419–433.

Johnson, C. J., S. E. Nielsen, E. H. Merrill, T. L. 
McDonald, and M. S. Boyce. 2006. Resource selec-
tion functions based on use–availability data: theo-
retical motivation and evaluation methods. Journal 
of Wildlife Management 70:347–357.

Johnson, D., M. Holloran, J. Connelly, S. Hanser, 
C.  Amundson, and S. Knick. 2011. Influences of 
environmental and anthropogenic features on 
greater sage-grouse populations, 1997–2007. Stud-
ies in Avian Biology 38:407–450.

Johnson, D. H. 1980. The comparison of usage and 
availability measurements for evaluating resource 
preference. Ecology 61:65–71.

Johnson, D. S., M. B. Hooten, and C. E. Kuhn. 2013. 
Estimating animal resource selection from telem-
etry data using point process models. Journal of 
Animal Ecology 82:1155–1164.

Knick, S. T., D. S. Dobkin, J. T. Rotenberry, M. A. 
Schroeder, W. M. Vander Haegen, and C. van Riper 
III. 2003. Teetering on the edge or too late? Con-
servation and research issues for avifauna of sage-
brush habitats. Condor 105:611–634.

Knick, S. T., S. E. Hanser, and K. L. Preston. 2013. 
Modeling ecological minimum requirements for 
distribution of greater sage-grouse leks: impli-
cations for population connectivity across their 
western range, USA. Ecology and Evolution 3: 
1539–1551.

Lesmerises, F., C. Dussault, and M.H. St-Laurent. 2012. 
Wolf habitat selection is shaped by human activi-
ties in a highly managed boreal forest. Forest Ecol-
ogy and Management 276:125–131.

Liaw, A., and M. Wiener. 2002. Classification and 
regression by randomForest. R News 2:18–22.

Matthiopoulos, J., M. Hebblewhite, G. Aarts, and 
J. Fieberg. 2011. Generalized functional responses 
for species distributions. Ecological Applications 
92:583–589.

McDonald, L., G. Beauprez, G. Gardner, J. Griswold, 
C. Hagen, F. Hornsby, D. Klute, S. Kyle, J. Pitman, 
and T. Rintz. 2014. Range-wide population size of 
the lesser prairie-chicken: 2012 and 2013. Wildlife 
Society Bulletin 38:536–546.

Meyer, C. B., and W. Thuiller. 2006. Accuracy of 
resource selection functions across spatial scales. 
Diversity and Distributions 12:288–297.

Miller, R. F., and L. L. Eddleman. 2001. Spatial and 
temporal changes of sage grouse habitat in the 
sagebrush biome. Technical Bulletin 151. Oregon 
State University Agricultural Experiment Station. 
Corvallis, Oregon, USA, 39 pp.

Mladenoff, D. J., T. A. Sickley, and A. P. Wydeven. 1999. 
Predicting gray wolf landscape recolonization: 

logistic regression models vs. new field data. Eco-
logical Applications 9:37–44.

Moreau, G., D. Fortin, S. Couturier, and T. Duchesne. 
2012. Multi-level functional responses for wildlife 
conservation: the case of threatened caribou in 
managed boreal forests. Journal of Applied Ecol-
ogy 49:611–620.

Murphy, H. T., and J. Lovett-Doust. 2007. Accounting 
for regional niche variation in habitat suitability 
models. Oikos 116:99–110.

Murphy, H. T., J. VanDerWal, and J. Lovett-Doust. 
2006. Distribution of abundance across the range 
in eastern North American trees. Global Ecology 
and Biogeography 15:63–71.

Murphy, M. A., J. S. Evans, and A. Storfer. 2010. Quan-
tifying Bufo boreas connectivity in Yellowstone 
National Park with landscape genetics. Ecology 
91:252–261.

Mysterud, A., and R. A. Ims. 1998. Functional respons-
es in habitat use: Availability influences relative 
use in trade-off situations. Ecology 79:1435–1441.

Naugle, D. E., K. E. Doherty, B. L. Walker, H. E. 
Copeland, M. J. Holloran, and J. D. Tack. 2011a. 
Sage-grouse and cumulative impacts of energy 
development. Pages 55–70 in D. Naugle, editor. 
Energy development and wildlife conservation in 
Western North America. Island Press, Washington, 
DC, USA.

Naugle, D. E., K. E. Doherty, B. L. Walker, H. E. 
Copeland, and J. D. Tack. 2011b. Sage-grouse and 
cumulative impacts of energy development. Pages 
213–225 in P. L. Krausman and L. K. Harris, editors. 
Cumulative effects in wildlife management. CRC 
Press, New York, New York, USA.

Nelle, P. J., K. P. Reese, and J. W. Connelly. 2000. Long-
term effects of fire on sage grouse habitat. Journal 
of Range Management 53:586–591.

Northrup, J. M., C. R. Anderson, and G. Wittemyer. 
2015. Quantifying spatial habitat loss from hydro-
carbon development through assessing habitat 
selection patterns of mule deer. Global Change 
Biology 21:3961–3970.

Northrup, J. M., M. B. Hooten, C. R. Anderson, 
and G. Wittemyer. 2013. Practical guidance on 
characterizing availability in resource selection 
functions under a use–availability design. Ecology 
94:1456–1463.

Olden, J. D., J. J. Lawler, and N. L. Poff. 2008. Machine 
learning without tears: a primer for ecologist. The 
Quarterly Review of Biology 83:171–193.

Patterson, R. L. 1952. The sage grouse in Wyoming. 
Wyoming Game and Fish Commission, Sage Books 
Inc., Denver, Colorado, USA.

R Core Team. 2012 R: a language and environment for 
statistical computing. R. Foundation for Statistical 



October 2016 v Volume 7(10) v Article e0146227 v www.esajournals.org

﻿� Doherty et al.

Computing, Vienna, Austria. http://www.R-proj 
ect.org/

Rehfeldt, G. E., N. L. Crookston, M. V. Warwell, and 
J.  S. Evans. 2006. Empirical analyses of plant-
climate relationships for the Western United 
States. International Journal of Plant Sciences 167: 
1123–1150.

Rhodes, J. R., J. G. Callaghan, C. A. McAlpine, C. D. 
Jong, M. E. Bowen, D. L. Mitchell, D. Lunney, 
and H. P. Possingham. 2008. Regional variation in 
habitat-occupancy thresholds: a warning for con-
servation planning. Journal of Applied Ecology 
45:549–557.

Roever, C. L., R. J. van Aarde, and K. Leggett. 2012. 
Functional responses in the habitat selection of a 
generalist mega-herbivore, the African savannah 
elephant. Ecography 35:972–982.

Royle, J. A., J. D. Nichols, and M. Kéry. 2005. Modelling 
occurrence and abundance of species when detec-
tion is imperfect. Oikos 110:353–359.

SAGA-GIS. 2015. version 2.1.0. http://www.saga-gis.
org/

Sagarin, R. D., S. D. Gaines, and B. Gaylord. 2006. Mov-
ing beyond assumptions to understand abundance 
distributions across the ranges of species. Trends in 
Ecology & Evolution 21:524–530.

Sanderson, E. W., K. H. Redford, A. Vedder, P. B. 
Coppolillo, and S. E. Ward. 2002. A conceptual 
model for conservation planning based on land-
scape species requirements. Landscape and Urban 
Planning 58:41–56.

Sawyer, H., R. M. Nielson, F. Lindzey, and L. L. 
McDonald. 2006. Winter habitat selection of mule 
deer before and during development of a natu-
ral gas field. Journal of Wildlife Management 70: 
396–403.

Schroeder, M. A., C. L. Aldridge, A. D. Apa, J. R. 
Bohne, C. E. Braun, S. D. Bunnell, J. W. Connelly, 
P.  A. Deibert, S. C. Gardner, and M. A. Hilliard. 
2004. Distribution of sage-grouse in North Amer-
ica. Condor 106:363–376.

Schroeder, M. A., and G. C. White. 1993. Dispersion 
of greater prairie chicken nests in relation to lek 
location: evaluation of the hot-spot hypothesis of 
lek evolution. Behavioral Ecology 4:266–270.

Shmueli, G. 2010. To explain or to predict? Statistical 
Science 25:289–310.

Silverman, B. W. 1986. Density estimation for statis-
tics and data analysis. CRC Press, New York, New 
York, USA.

Stephens, P. A., N. Pettorelli, J. Barlow, M. J. 
Whittingham, and M. W. Cadotte. 2015. Manage-
ment by proxy? The use of indices in applied ecol-
ogy. Journal of Applied Ecology 52:1–6.

Stiver, S., A. Apa, J. Bohne, S. Bunnell, P. Deibert, 
S.  Gardner, M. Hilliard, C. McCarthy, and 
M.  Schroeder. 2006. Greater sage-grouse 
comprehensive conservation strategy. West-
ern Association of Fish and Wildlife Agencies, 
Cheyenne, Wyoming, USA.

Tack, J. 2009. Sage-grouse and the human footprint: 
implications for conservation of small and declin-
ing populations. University of Montana, Missoula, 
Montana, USA.

van der Hoek, Y., A. M. Wilson, R. Renfrew, J. Walsh, 
P. G. Rodewald, J. Baldy, and L. L. Manne. 2015. 
Regional variability in extinction thresholds for 
forest birds in the north-eastern United States: an 
examination of potential drivers using long-term 
breeding bird atlas datasets. Diversity and Distri-
butions 21:686–697.

WAFWA. 2015. Greater sage-grouse population trends: 
an analysis of lek count databases 1965–2015. West-
ern Association of Fish and Wildlife Agencies, 
Cheyenne, Wyoming, USA, 55 pp.

Wisdom, M. J., C. W. Meinke, S. T. Knick, and M. A. 
Schroeder. 2011. Factors associated with extir-
pation of sage-grouse. Studies in Avian Biology 
38:451–472.

Worton, B. J. 1989. Kernel methods for estimating the 
utilization distribution in home-range studies. 
Ecology 70:164–168.

Supporting Information

Additional Supporting Information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/
ecs2.1462/supinfo

http://www.R-project.org/
http://www.R-project.org/
http://www.saga-gis.org/
http://www.saga-gis.org/
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1462/supinfo
http://onlinelibrary.wiley.com/doi/10.1002/ecs2.1462/supinfo

